Topics:
* Reinforcement Learning Part 1
* Policy Gradients

CS 4803-DL / 7643-A
ZSOLT KIRA

Assignment 4 out
* Due date extended to April 8" 11:59pm EST.
 Last HW!

Projects
 Will try to get feedback back to you before project period starts

Outline of rest of course:
 Reinforcement Learning

* Guest lectures/other topics (e.g. self-supervised learning, audio)
e April 7th: Wav2Vec !!
e April 9t: Ishan Misra (FB) on Self-Supervised Learning
* April 14th: Automatic Speech Recognition Systems

* Generative models (VAEs / GANs)

Nirbhay Modhe

Nirbhay Modhe is a PhD Student in the School of
Interactive Computing at Georgia Tech advised by
Prof. Dhruv Batra. His research interests within
Reinforcement Learning (RL) include model based
RL, generalization guarantees in RL and
unsupervised or reward-free RL for exploration. Prior
to starting his PhD program in 2017, he received his
Bachelor’s degree in Computer Science at the Indian
Institute of Technology (lIT), Kanpur where he
worked with Prof. Piyush Rai on Bayesian ML
applied to multi-label learning.

Slides Brought to You By...

Markov Decision Processes (MDPs) MDP

States, Actions, Reward dist., Transition dist., (S, ,A, R, T, 7)
Discount factor (gamma)

Policy: State Action
Mapping from states to actions (deterministic) ‘ A—2
Distribution of actions given states (stochastic) ‘ B—1

What is a good policy?
Maximize discounted sum of future rewards
Discount factor: 7Y v

1 % W

Worth Now Worth Next Step Worth In Two Steps

) Recap: MDPs, Policy Gegsth

JL

First Lecture

Value lteration

Bellman update to state value
estimates

Q-Value Iteration

Bellman update to (state,
action) value estimates

Policy Iteration
Policy evaluation + refinement

Sample-Based Policy Evaluation?

* We want to improve our estimate of V by computing these averages:
Vi 1(s) < Y T(s,7(s),s)[R(s,7(s),s") + VI (s)]

* |dea: Take samples of outcomes s’ (by doing tt
sample; = R(s,m(s), 8/1) -+ ’kaW(sll)

sampley = R(s, m(s),55) + Vi (sh) | i/f =SSN
o« o o | ‘I C
samplen = R(s,m(s),sp) + Vi (sp) | & & 3 | QUM

1
Vig1(s) « - > sample;
)

T —— e

What'’s the difficulty of this algorithm? state’s.

Temporal Difference Learning

* Bigidea: learn from every experience!
* Update V(s) each time we experience a transition (s, a, s’, r)
* Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
* Policy still fixed, still doing evaluation!

* Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,m(s),s") + V™ (s)
Updateto V(s): V7 (s) + (1 — a)V"(s) 4+ (a)sample

Same update: VT(s) + V™(s) 4+ a(sample — V7 (s))

Minibatch of {(5, a, S,, T)i Z'B;l

Forward pass:

State — Q-Network » Q-Values per action
B x D B x Nactions
Compute loss: (Qnew(57 a) — (r + yma FC-4 (Q-values)
\ Y 4 ¢ FC-256
9 Q-Network
new

Backward pass:) [,088

90 {

) Deep Q-Learning Gectran

Dynamic Programming
Value, Q-Value Iteration
Policy Iteration

Reinforcement Learning (RL)
The challenges of (deep) learning based methods
Value-based RL algorithms
Deep Q-Learning

Today
Policy-based RL algorithms (policy gradients)

Policy
Gradients,

Actor-Critic

Transition and
Reward Function

Yes No
Known?

f Use VaIuelPollcy < (Estimate Transition & Estimate Q values from
Iteratlon L Reward Function data (DQNs, etc)

./

Directly Optimize
Policy v

Obtain "optimal"
policy

Overview Ge%%ﬁn&

Class of policies defined by parameters (9

mo(als) : S — A

Eg: @ can be parameters of linear transformation, deep network, etc.

Want to maximize: A

J(m) =E | R(st,ar)

t=1

In other words,

7 = arg max [E
mS—A

T T
stt,at)] m— (" = argmaxE | > R(si, a)

t=1 t=1

) Parametrized Policy Gectran

raw pixels hidden layer

Pong from Pixels Gegrata |

forward pass Supervised Learning

> log probabilities (correct label is provided)

-1.2 | -0.36
: block of differentiable compute :
'mage (e.g. neural net) P gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» |og probabilities
A5 -0.36 | —— sample an action:
. block of differentiable compute :
'mage (e.g. neural net) i i
0 -1.0

A

eventual reward -1.0
backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Loss Function Geqedh

Jh

Slightly re-writing the notation

Let T = (50, ag,...ST, CLT) denote a trajectory

779(7-) — pQ(T) — Do (807%07 “ e ST,CLT)

= p(so) Hp9 (at | st) - p(St+1 | ¢, at)
t=0

arg meax B po () [R(7T)]

Gathering Data/Experience Gegrata |

J(@) — ETNPQ (1) [R(T)]
=K

ay~T(-|8¢),5t41~p(+|s¢,a¢)

How to gather data?
We already have a policy: 779

A
§ R Sta CLt
| t=0

N
Sample N trajectorles{Tz} —1 by acting according to 779

1 N T
~ NS: JT(S;CLZE)

1=1 t=1

) Gathering Data/Experience

Georgia
Tech

411

Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

VeJ(0) = ?

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm A

= Vg /WQ(T)R(T)CZT Expectation as integral

= /VQWQ(T)R(T)CZT Exchange integral and gradient

Deriving The Policy Gradient Geqctn

AL

me(7) = p(s0) HPH (ai | s¢) - p(se+1 | se,ae)

Vo (0) = Errpo(r)[Vologmo(T)R(7)

Doesn’t depend on

T T
Vo |lompbon) + > logmg(as]s:) + Z*@g*péswri-m)] Transition probabilities!
t=1 t=1

_ T -
= ETNPQ(T) ZV@ logﬂ'g Clt‘St ZR St,CLt
| t=1

l Vi ——
4

f i | i

\ 0 X "
=
i
¢

jax
4

Continuous Action Space?

) Deriving The Policy Gradient Gograla

Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

T
VoJ (0 NZ ZVglogwe aj | s}) ZR sy | ap)
7 t=1

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Sy

upP DOWN UP UP

® @ >. @ h.DOWN @ DOWN P. DOWN r® upP P. WIN
® DOWNF. UP r® UP - ® DOWNh. UP -® UP @ LOSE
@ UP -® UP -® DOWN’. DDWN-.DOWN’. DOWN..' uP -® LOSE
® ro— 0oL o0 @ WIN

r r
Ld L

Slide credit: Dhruv Batra

Drawbacks of Policy Gradients SEE

Tech

Issues with Policy Gradients

e Credit assignment is hard!
— Which specific action led to increase in reward
— Suffers from high variance = leading to unstable training

Georgia |

Tech |}

Variance reduction

Gradient estimator: VgJ(6) =~ ZT(‘T)VQ log g (at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

YOS (Z r,y) Vo log mo(as|s:)

t>0 \t/>t

Georgia |
Tech |}

Variance reduction

Gradient estimator: VgJ(6) =~ ZT(T)Ve log g (at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

YOS (Z r,y) Vo log mo(as|s:)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ(0) = Z (Z W’t’_tTt') Vo logmg(ai|st)

t>0 \t/>t

Georgia |
Tech|)

Credit assignment is hard!
Which specific action led to increase in reward
Suffers from high variance, leading to unstable training

How to reduce the variance?
Subtract an action independent baseline from the reward

Zvelogﬂe a | 5¢) Z (5¢,a¢) b(St))]

t=1 t=1

VGJ(H) — ETNpg (7)

Why does it work?
What is the best choice of b?

) Drawbacks of Policy Gradients Gectran

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Georgia |
Tech |}

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Georgia |
Tech |}

Actor-Critic

* Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

Georgia |

Tech |}

Actor-Critic

* Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

* REINFORCE: VyJ(mg) = Eqn, [V logm(a|s)R (s, a)]

* Actor-critic: Vg J(mg) = Eq~r, |Vologmg(a|s)Q™ (s, a)]

Georgia |
Tech |}

Actor-Critic

Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

REINFORCE: Vo J(mg) = Eqorr, [V logmg(a

Actor-critic: Vg J(ﬂ'g) = anm :Vg log g (CL

Q function is unknown too! Update using

>

R(s,a)

s)R(s,a)
s)Q™ (s, a)]

Georgia |
Tech |}

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)

Georgia |

Tech |}

Actor-Critic

* |nitialize s, 6 (policy network) and 5 (Q network)
e sample action a ~ my(+|s)

Georgia |

Tech |}

Actor-Critic

* |nitialize s,9 (policy network) and 8 (Q network)
e sample action a ~ my(-|s)
* For each step:

— Sample reward R(s,a) and next state s ~ p(s'|s,a)

Georgia |

Tech|)

Actor-Critic

* Initialize s, 6 (policy network) and 5 (Q network)
* sample action a ~ my(:|s)
* For each step:

— Sample reward R(s,a) and next state s ~ p(s'|s, a)
— evaluate “actor” using “critic” Qs(s,a)

Georgia |
Tech|)

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ my(:|s)
* For each step:

— Sample reward R(s,a) and nextstate s’ ~ p(s'|s,a)

— evaluate “actor” using “critic” @Qs(s,a) and update policy:

0« 0+ aVylogmy(a|s)Qs(s,a)

Georgia |
Tech |}

* |nitialize s, 6 (policy network) and 5 (Q network)
e sample action a ~ my(+|s)
* For each step:

— Sample reward R(s,a) and next state s’ ~ p(s'|s,a)
— evaluate “actor” using “critic” Qs(s,a) and update policy:

0« 0+ aVylogm(a|s)Qs(s,a)

2
— Update “critic”:MSE Loss := (Qnew(s, a) — (r + max Quq(s’, a))>
* Recall Q-learning

) Actor-Critic Gacraia |

* Initialize s, ¢ (policy network) and g (Q network)
* sample action a ~ my(:|s)
* For each step:

—Sample reward R(s,a) and next state s’ ~ p(s'|s,a)
— evaluate “actor” using “critic” Qs(s,a) and update policy:

0« 0+ aVylogme(a | s)Qs(s,a)
— Update “critic”: ,
e Recall Q-learning MSE Loss := (Qnew(s, a) — (T + max Qold(sla a))>
a<+a,s+ s

* Update 8 Accordingly

) Actor-Critic Gacraia |

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if @" (S¢,a:) — V™ (s¢)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: V,J(6) = Z(Q”(st, ar) — V™ (s:))Voglogma(ai|st)

t>0

Georgia |
Tech |}

Actor-critic

* |In general, replacing the policy evaluation or the “critic”
leads to different flavors of the actor-critic

— REINFORCE: VyJ(mg) = Eqmr, [Vologmg(als)R(s,a)]
— Q- Actor Critic VgJ(7m9) = Egnn, [Vologmg(als)Q™ (s, a)]

— Advantage Actor Critic: VgJ(m9) = Eqrn, [V log ma(als)A™ (s, a)]
— Qﬂe (37 0,) — Ve (S)

Georgia |
Tech |}

Summary

e Policy Learning:
— Policy gradients
— REINFORCE
— Reducing Variance (Homework!)
* Actor-Critic:
— Other ways of performing “policy evaluation”
— Variants of Actor-critic

Georgia |
Tech |}

Summary

- Policy gradients: very general but suffer from high variance so
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually
more sample-efficient. Challenge: exploration

- GQuarantees:

- Policy Gradients: Converges to a local minima of J(8), often good enough!

- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function
approximator

Georgia |
Tech|)

Sparse long-horizon tasks (Montezuma’s revenge)
Imitation Learning

Sim2Real — Simulation to real, domain randomization
Lifelong Learning

Safety

World Models

) Open Problems / Challenges

Georgia |

Tech |}

Playing Go

Rules
» Each player puts a stone on the goban, black first

» Each stone remains on the goban, except:

E

o0
g v, &
'il ”;

group w/o degree freedom is killed a group with two eyes can't be killec

» The goal is to control the max. territory

Georgia |
Tech|)

Go is a Difficult Game

Features

» Size of the state space 2.10'7°

» Size of the action space 200

» No good evaluation function

v

Local and global features (symmetries,
freedom, ...)

» A move might make a difference some
dozen plies later

Georgia |
Tech|)

AlphaGo

Go is a perfect information game
— See entire board at all times
— Has an optimal value function!

Key idea: We cannot unroll search tree to learn a policy/value for a large
number of states, instead:

— Reduce depth of search via position evaluation: Replace subtrees with estimated value
function v(s)

— Reduce breadth of search via action sampling: Don’t perform unlikely actions
* Start by predicting expert actions, gives you a probability distribution

Use Monte Carlo rollouts, with a policy, selecting children with higher values
— As policy improves this search improves too

Georgia |
Tech |}

Rollout policy

SL policy network

RL policy network Value network

-

.

\
(" p,

P

v i

AR

evaluation

Human expert positions

selection

\‘ e f A
A\:., 4 evaluati

Self-play Positions

MoM@N [ednan

on

Bleg

AlphaGo Zero

MCTS with Self-Play

Don’t have to guess what opponent might do, so...

If no exploration, a big-branching game tree becomes one path

You get an automatically improving, evenly-matched opponent who is accurately learning your strategy
“We have met the enemy, and he is us” (famous variant of Pogo, 1954)

No need for human expert scoring rules for boards from unfinished games

Treat board as an image: use residual convolutional neural network

AlphaGo Zero: One deep neural network learns both the value function and policy in parallel

Alpha Zero: Removed rollout altogether from MCTS and just used current neural net estimates instead

Georgia |

Tech ||

AlphaGo Zero

5000 -

4000 -

3000 -

2000 -

Elo Rating

1000 -

-1000 -

-2000 -

I I I I 1 T I I 1

0 5 10 15 20 25 30 35 40

=== AlphaGo Zero 40 blocks e==e AlphaGo Lee seee AlphaGo Master

Georgia |

Tech)

Models

Screenshot Image

Reconstruction

At each time step, our agent

receives an observation from

the environment.

World Model

— — A .
The Vision Model (V) encodes the
high-dimensional observation into vV A V
a low-cimensional latent vector.

/'_ Z Z Z
The Memory RNN (M) integrates h f h h

the historical codes to create a M
representation that can predict
future states.

A small Controller (C) uses the

representations from both Ej rj
V and M to select good actions. Z C z C z ;C
a

The agent performs actions that a
go back and affect the environment.

<

