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Topics:
• Reinforcement Learning Part 1

• Policy Gradients



Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.
• Last HW!

• Projects
• Will try to get feedback back to you before project period starts

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems 

• Generative models (VAEs / GANs)
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⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist., 
Discount factor (gamma)

⬣ Policy: 

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

⬣ What is a good policy? 

⬣ Maximize discounted sum of future rewards

⬣ Discount factor: 

Recap: MDPs, Policy

MDP



Value Iteration

⬣ Bellman update to state value 
estimates

Q-Value Iteration

⬣ Bellman update to (state, 
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

First Lecture



Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average
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Almost!  But we can’t 
rewind time to get 

sample after sample from 
state s.What’s the difficulty of this algorithm?



Temporal Difference Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average
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Sample of V(s):

Update to V(s):

Same update:



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network



⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Policy Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Today

⬣ Policy-based RL algorithms (policy gradients)

Last Time(s)



Policy 
Gradients, 
Actor-Critic



Overview



⬣ Class of policies defined by parameters

⬣ Eg:     can be parameters of linear transformation, deep network, etc. 

⬣ Want to maximize:

⬣ In other words, 

Parametrized Policy



Pong from Pixels



Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/



⬣ Slightly re-writing the notation

Let denote a trajectory

Gathering Data/Experience



⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories                 by acting according to 

Gathering Data/Experience



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

The REINFORCE Algorithm

Run the policy and 
sample trajectories

Compute policy 
gradient Update policyUpdate policy

Slide credit: Sergey Levine

?



Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient



Deriving The Policy Gradient

Doesn’t depend on 
Transition probabilities!

Continuous Action Space?



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

Run the policy and 
sample trajectories

Compute policy 
gradient Update policyUpdate policy

The REINFORCE Algorithm

Slide credit: Sergey Levine



Drawbacks of Policy Gradients

Slide credit: Dhruv Batra



Issues with Policy Gradients

• Credit assignment is hard! 
– Which specific action led to increase in reward
– Suffers from high variance  leading to unstable training



Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



⬣ Credit assignment is hard! 

⬣ Which specific action led to increase in reward

⬣ Suffers from high variance, leading to unstable training

⬣ How to reduce the variance? 

⬣ Subtract an action independent baseline from the reward

⬣ Why does it work? 

⬣ What is the best choice of b?

Drawbacks of Policy Gradients



How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy



Actor-Critic
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• REINFORCE: 

• Actor-critic:



Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE: 

• Actor-critic:

• Q function is unknown too! Update using



Actor-Critic

• Initialize s,   (policy network) and    (Q network)



Actor-Critic

• Initialize s,   (policy network) and    (Q network)
• sample action                        



Actor-Critic

• Initialize s,   (policy network) and    (Q network)
• sample action                        
• For each step:

– Sample reward                  and next state
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• Initialize s,   (policy network) and    (Q network)
• sample action                        
• For each step:

– Sample reward                  and next state 
– evaluate “actor” using “critic”                    and update policy:

– Update “critic”:
• Recall Q-learning

Actor-Critic



• Initialize s,   (policy network) and    (Q network)
• sample action                        
• For each step:

– Sample reward                  and next state 
– evaluate “actor” using “critic”                    and update policy:

– Update “critic”:
• Recall Q-learning

• Update     Accordingly

Actor-Critic



How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if                                       
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Actor-critic
• In general, replacing the policy evaluation or the “critic” 

leads to different flavors of the actor-critic
– REINFORCE:

– Q – Actor Critic

– Advantage Actor Critic:

“how much better is an action than 
expected?



Summary

• Policy Learning:
– Policy gradients
– REINFORCE
– Reducing Variance (Homework!)

• Actor-Critic:
– Other ways of performing “policy evaluation”
– Variants of Actor-critic



Summary
- Policy gradients: very general but suffer from high variance so 

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually 

more sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function 

approximator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



• Sparse long-horizon tasks (Montezuma’s revenge)
• Imitation Learning
• Sim2Real – Simulation to real, domain randomization
• Lifelong Learning
• Safety
• World Models

Open Problems / Challenges



Playing Go



Go is a Difficult Game



AlphaGo

• Go is a perfect information game
– See entire board at all times
– Has an optimal value function!

• Key idea: We cannot unroll search tree to learn a policy/value for a large 
number of states, instead:
– Reduce depth of search via position evaluation: Replace subtrees with estimated value 

function v(s)
– Reduce breadth of search via action sampling: Don’t perform unlikely actions

• Start by predicting expert actions, gives you a probability distribution

• Use Monte Carlo rollouts, with a policy, selecting children with higher values
– As policy improves this search improves too





AlphaGo Zero
• MCTS with Self-Play

– Don’t have to guess what opponent might do, so…
– If no exploration, a big-branching game tree becomes one path
– You get an automatically improving, evenly-matched opponent who is accurately learning your strategy
– “We have met the enemy, and he is us” (famous variant of Pogo, 1954)
– No need for human expert scoring rules for boards from unfinished games

• Treat board as an image: use residual convolutional neural network

• AlphaGo Zero: One deep neural network learns both the value function and policy in parallel

• Alpha Zero: Removed rollout altogether from MCTS and just used current neural net estimates instead

(C) Dhruv Batra & Zsolt Kira 47
Slide Credit: Craven & Page



AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017



World Models


