
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Reinforcement Learning Part 1

• Policy Gradients

Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.
• Last HW!

• Projects
• Will try to get feedback back to you before project period starts

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems

• Generative models (VAEs / GANs)

Nirbhay Modhe

Nirbhay Modhe is a PhD Student in the School of
Interactive Computing at Georgia Tech advised by
Prof. Dhruv Batra. His research interests within
Reinforcement Learning (RL) include model based
RL, generalization guarantees in RL and
unsupervised or reward-free RL for exploration. Prior
to starting his PhD program in 2017, he received his
Bachelor’s degree in Computer Science at the Indian
Institute of Technology (IIT), Kanpur where he
worked with Prof. Piyush Rai on Bayesian ML
applied to multi-label learning.

Slides Brought to You By…

Replace with photo.
Add glow: 022539 HEX color

at 5 pt size with 60%
transpareancy

⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist.,
Discount factor (gamma)

⬣ Policy:

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

⬣ What is a good policy?

⬣ Maximize discounted sum of future rewards

⬣ Discount factor:

Recap: MDPs, Policy

MDP

Value Iteration

⬣ Bellman update to state value
estimates

Q-Value Iteration

⬣ Bellman update to (state,
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

First Lecture

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

1s
'

2s
'

3s
'

s, (s),s’
s
'

Almost! But we can’t
rewind time to get

sample after sample from
state s.What’s the difficulty of this algorithm?

Temporal Difference Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

(s)
s

s,
(s)

s’

Sample of V(s):

Update to V(s):

Same update:

⬣ Minibatch of

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Policy Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Today

⬣ Policy-based RL algorithms (policy gradients)

Last Time(s)

Policy
Gradients,
Actor-Critic

Overview

⬣ Class of policies defined by parameters

⬣ Eg: can be parameters of linear transformation, deep network, etc.

⬣ Want to maximize:

⬣ In other words,

Parametrized Policy

Pong from Pixels

Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/

⬣ Slightly re-writing the notation

Let denote a trajectory

Gathering Data/Experience

⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories by acting according to

Gathering Data/Experience

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

The REINFORCE Algorithm

Run the policy and
sample trajectories

Compute policy
gradient Update policyUpdate policy

Slide credit: Sergey Levine

?

Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient

Deriving The Policy Gradient

Doesn’t depend on
Transition probabilities!

Continuous Action Space?

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

Run the policy and
sample trajectories

Compute policy
gradient Update policyUpdate policy

The REINFORCE Algorithm

Slide credit: Sergey Levine

Drawbacks of Policy Gradients

Slide credit: Dhruv Batra

Issues with Policy Gradients

• Credit assignment is hard!
– Which specific action led to increase in reward
– Suffers from high variance  leading to unstable training

Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Credit assignment is hard!

⬣ Which specific action led to increase in reward

⬣ Suffers from high variance, leading to unstable training

⬣ How to reduce the variance?

⬣ Subtract an action independent baseline from the reward

⬣ Why does it work?

⬣ What is the best choice of b?

Drawbacks of Policy Gradients

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE:

• Actor-critic:

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE:

• Actor-critic:

• Q function is unknown too! Update using

Actor-Critic

• Initialize s, (policy network) and (Q network)

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic”

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

– Update “critic”:
• Recall Q-learning

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

– Update “critic”:
• Recall Q-learning

• Update Accordingly

Actor-Critic

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Actor-critic
• In general, replacing the policy evaluation or the “critic”

leads to different flavors of the actor-critic
– REINFORCE:

– Q – Actor Critic

– Advantage Actor Critic:

“how much better is an action than
expected?

Summary

• Policy Learning:
– Policy gradients
– REINFORCE
– Reducing Variance (Homework!)

• Actor-Critic:
– Other ways of performing “policy evaluation”
– Variants of Actor-critic

Summary
- Policy gradients: very general but suffer from high variance so

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually

more sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function

approximator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Sparse long-horizon tasks (Montezuma’s revenge)
• Imitation Learning
• Sim2Real – Simulation to real, domain randomization
• Lifelong Learning
• Safety
• World Models

Open Problems / Challenges

Playing Go

Go is a Difficult Game

AlphaGo

• Go is a perfect information game
– See entire board at all times
– Has an optimal value function!

• Key idea: We cannot unroll search tree to learn a policy/value for a large
number of states, instead:
– Reduce depth of search via position evaluation: Replace subtrees with estimated value

function v(s)
– Reduce breadth of search via action sampling: Don’t perform unlikely actions

• Start by predicting expert actions, gives you a probability distribution

• Use Monte Carlo rollouts, with a policy, selecting children with higher values
– As policy improves this search improves too

AlphaGo Zero
• MCTS with Self-Play

– Don’t have to guess what opponent might do, so…
– If no exploration, a big-branching game tree becomes one path
– You get an automatically improving, evenly-matched opponent who is accurately learning your strategy
– “We have met the enemy, and he is us” (famous variant of Pogo, 1954)
– No need for human expert scoring rules for boards from unfinished games

• Treat board as an image: use residual convolutional neural network

• AlphaGo Zero: One deep neural network learns both the value function and policy in parallel

• Alpha Zero: Removed rollout altogether from MCTS and just used current neural net estimates instead

(C) Dhruv Batra & Zsolt Kira 47
Slide Credit: Craven & Page

AlphaGo Zero

https://deepmind.com/blog/alphago-zero-learning-scratch/

D. Silver et al., Mastering the Game of Go without Human Knowledge, Nature 550, October 2017

World Models

