Self-supervised for speech processing

Facebook Al Research

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

ng Xu Tatiana
Likhomanenko

Paden Tomasello

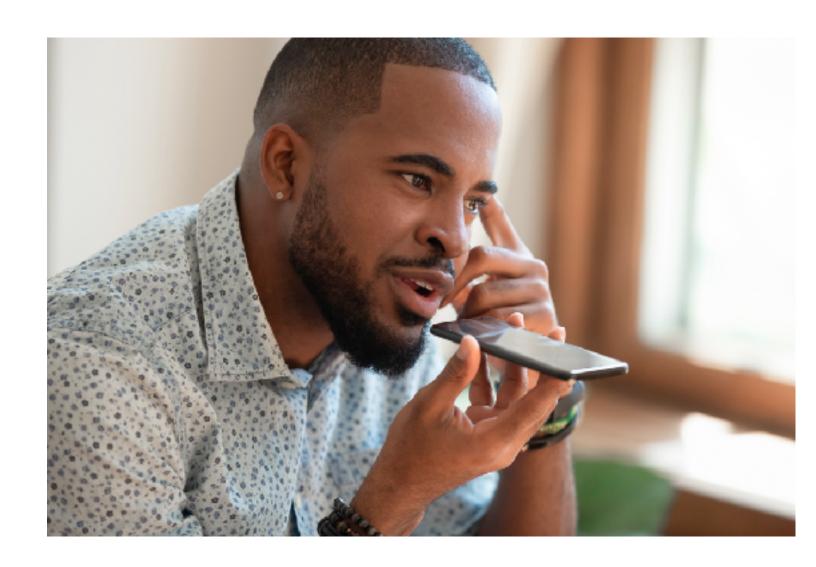
Ronan Collobert

Gabriel Synnaeve

Speech technology

Video captioning

Home devices



Mobile devices

Speech applications

- Speech to text (Speech recognition)
- Text to speech
- Keyword spotting ("Hey Alexa/Portal")
- Speaker identification
- Language identification
- Speech translation

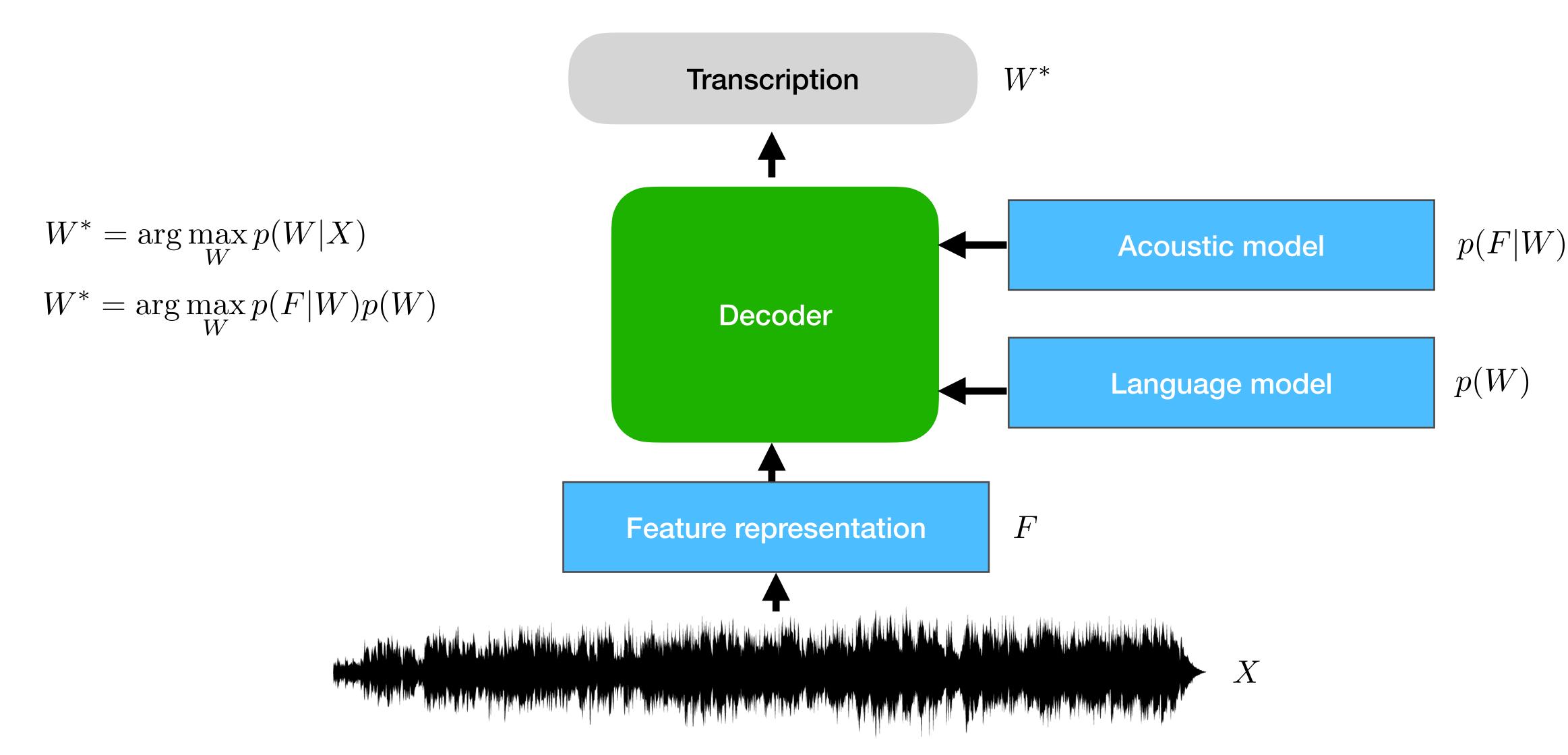


Overview

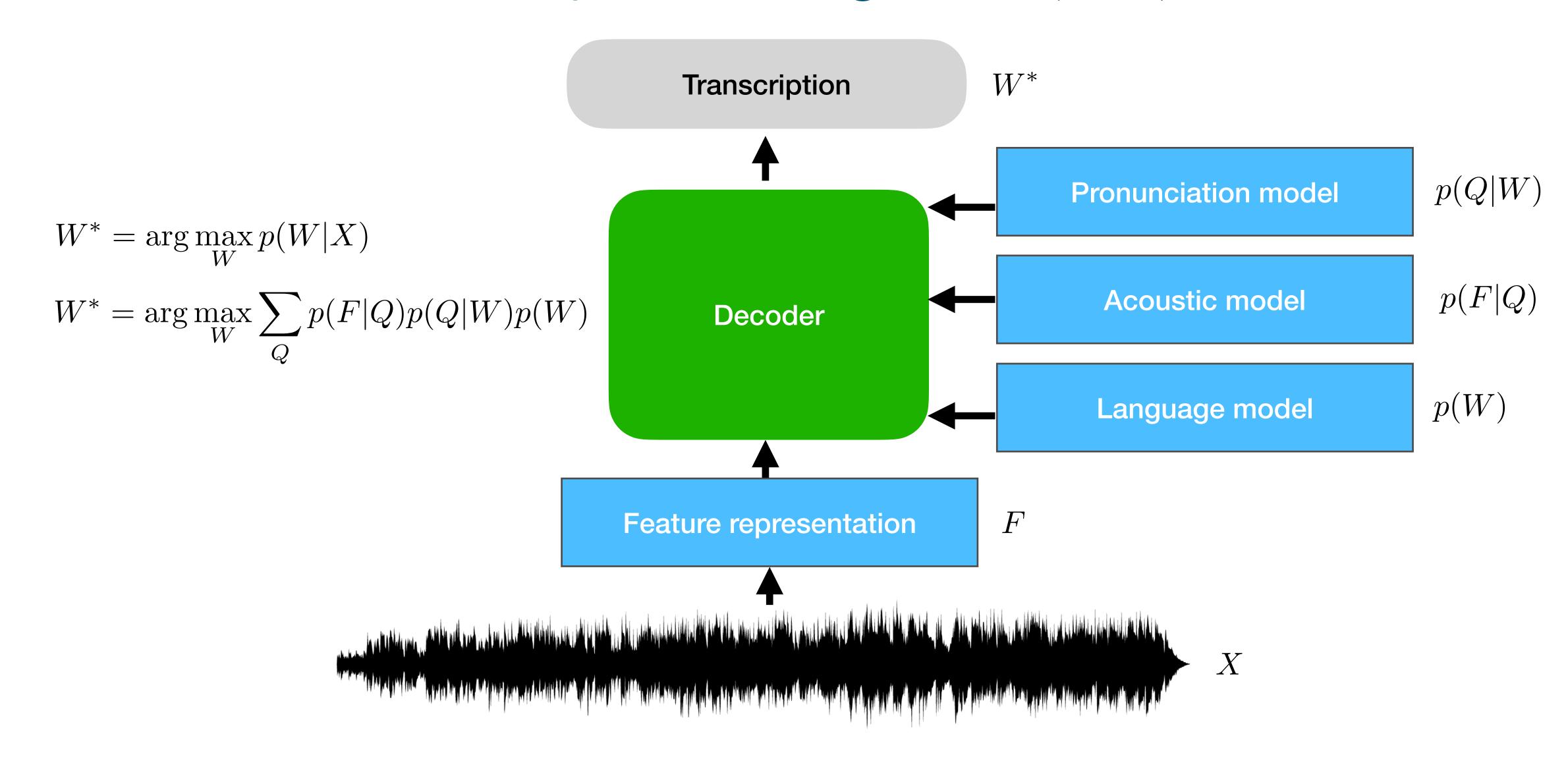
- Speech recognition
- Speech processing with less supervision / self-supervised learning
- Cross-lingual self-supervised learning for speech

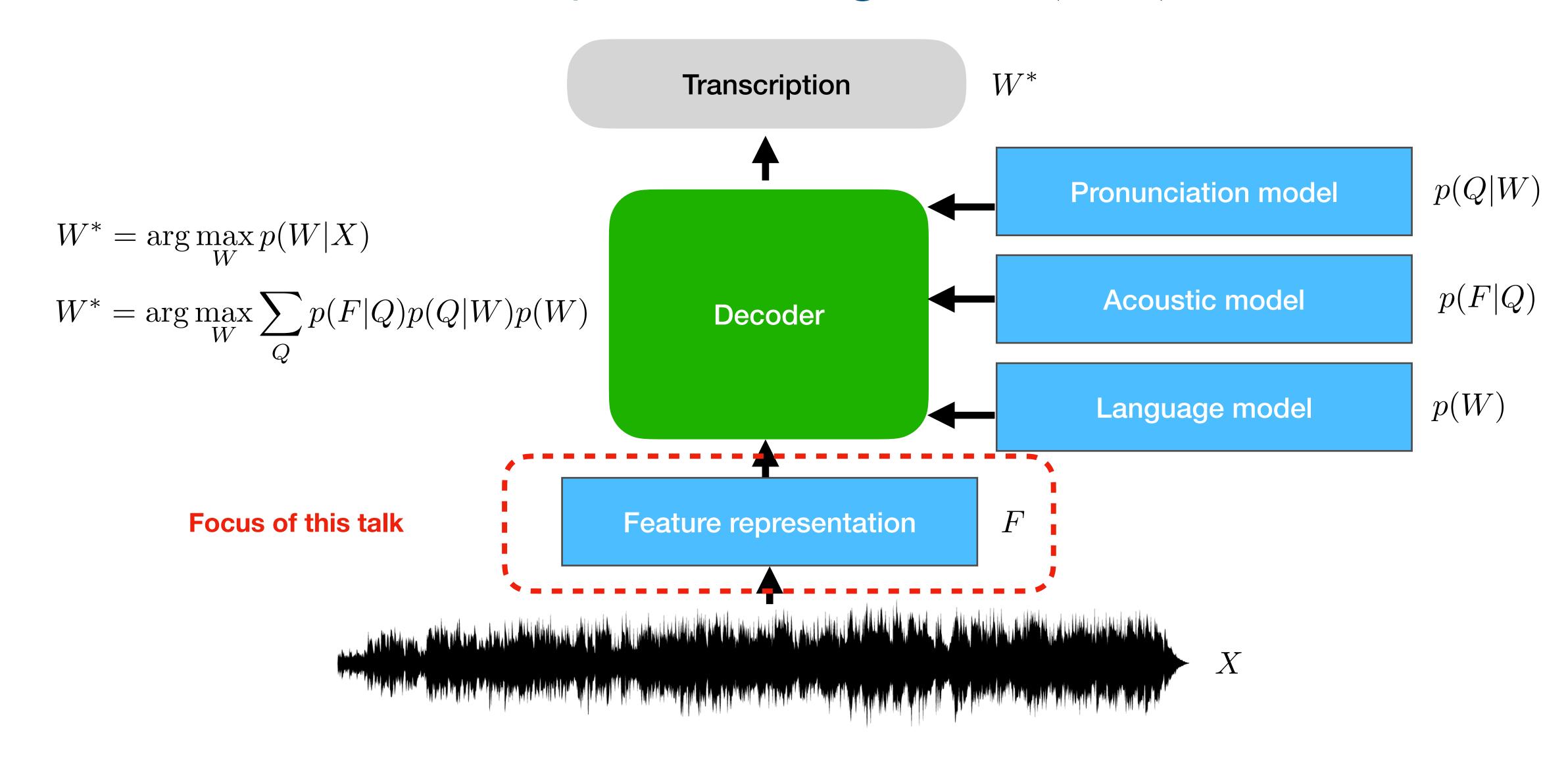
Speech recognition

with like black milk tea

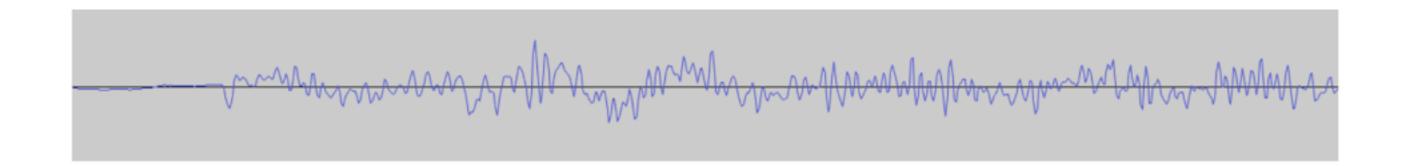


- Represent words as sequences of phonemes
- hello = h eh l ow
- Distinct units of sound to distinguish words





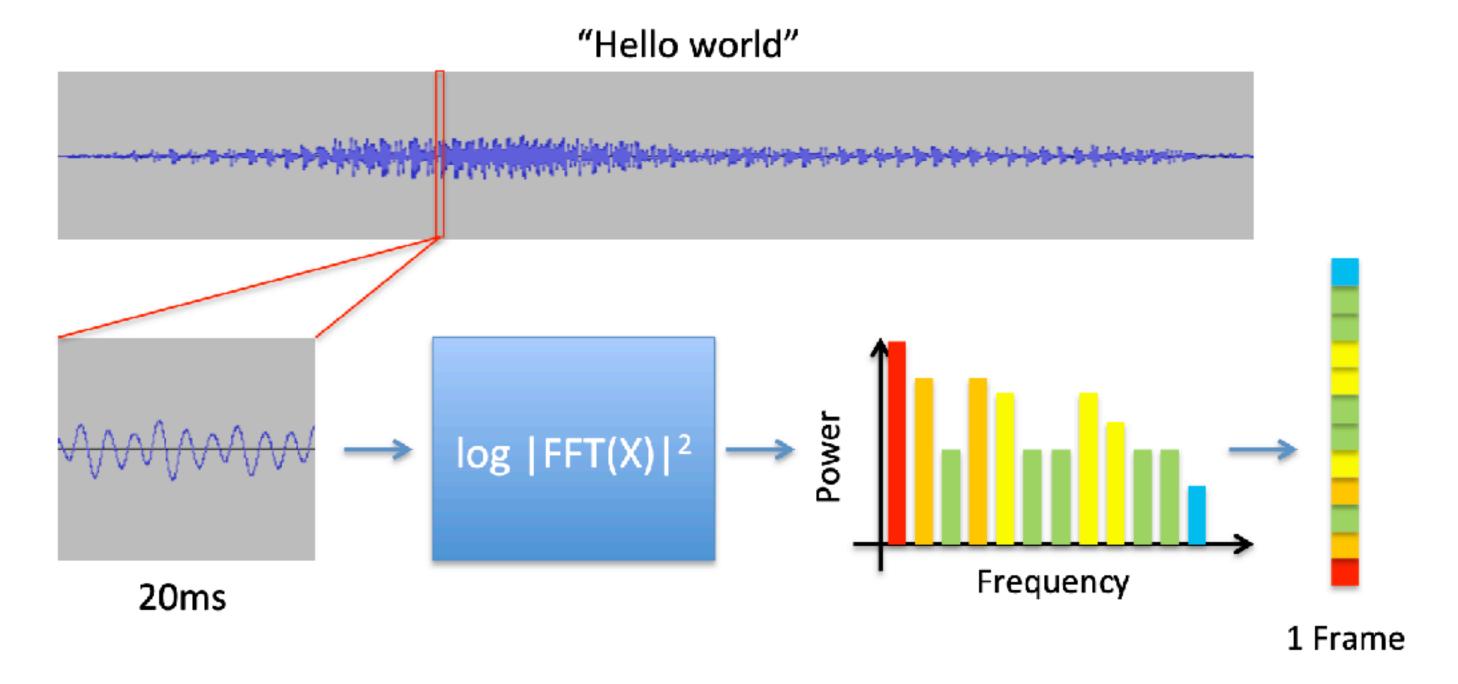
Feature representation



- Typical sample rates for speech: 8KHz, 16KHz.
- Traditionally: build spectrogram

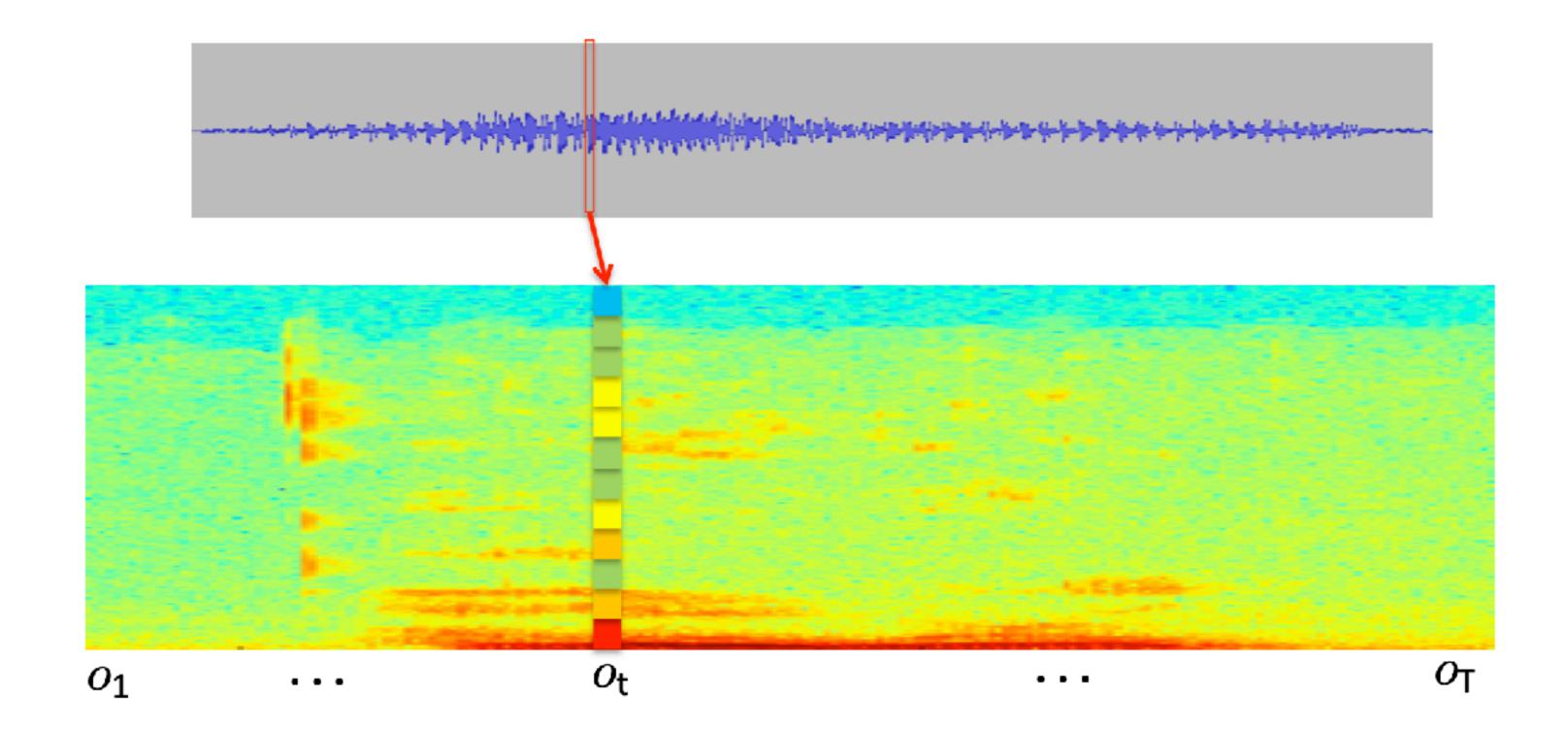
Spectrogram

- Small window, e.g., 20ms of waveform
 - Compute FFT and take magnitude
 - Describes frequency content in local window



Spectrogram

• Concatenate frames from adjacent windows to form a spectrogram



Self-supervised speech representation learning

Training speech recognition models

l like black tea with milk

- Train on 1,000s of hours of transcribed data for good systems.
- Many languages, dialects, domains etc.

Supervised Machine learning

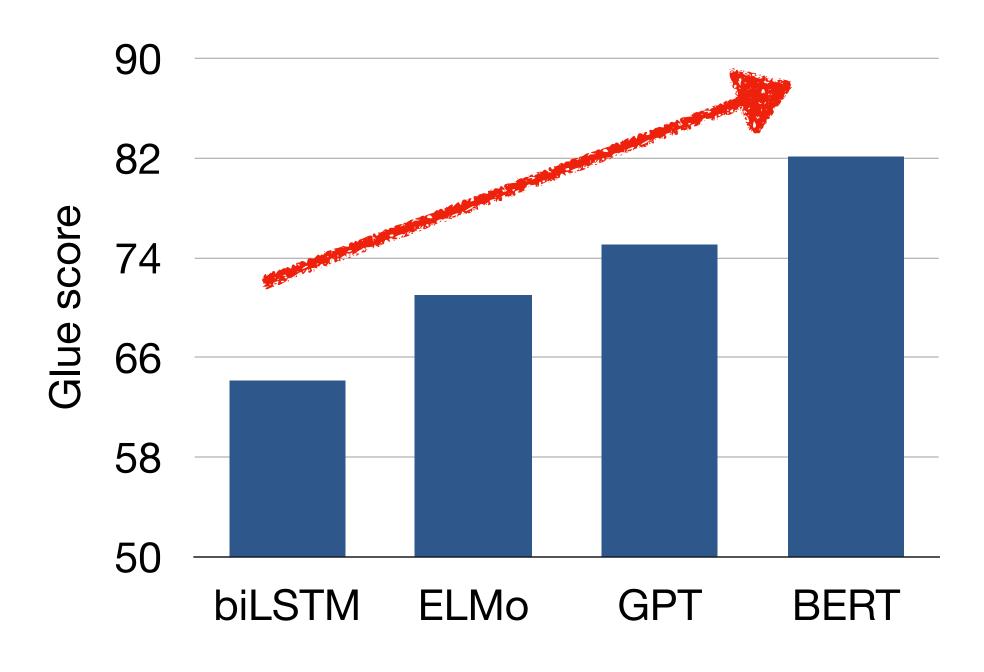
, cat

potential train/test mismatch

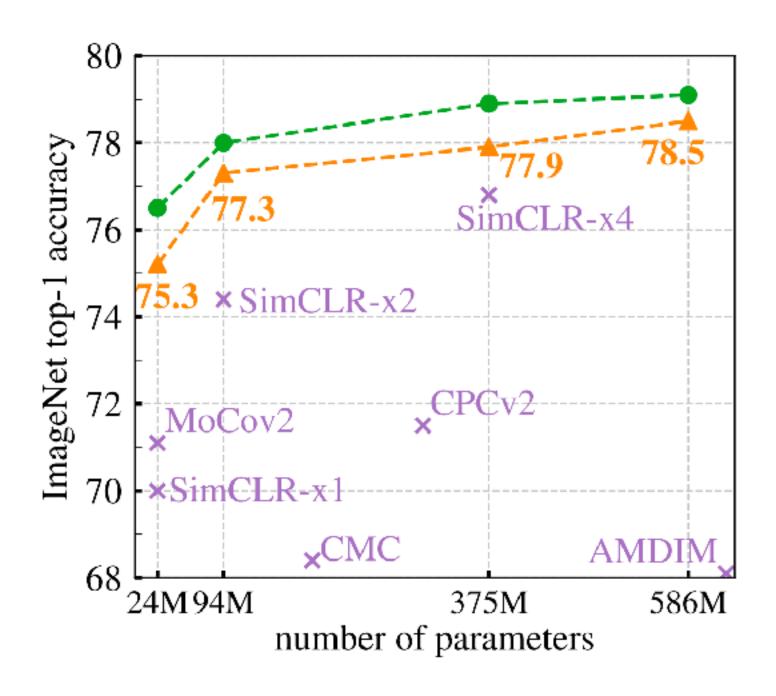
Need to annotate lots of data!

Meanwhile in other fields

Pre-training in NLP



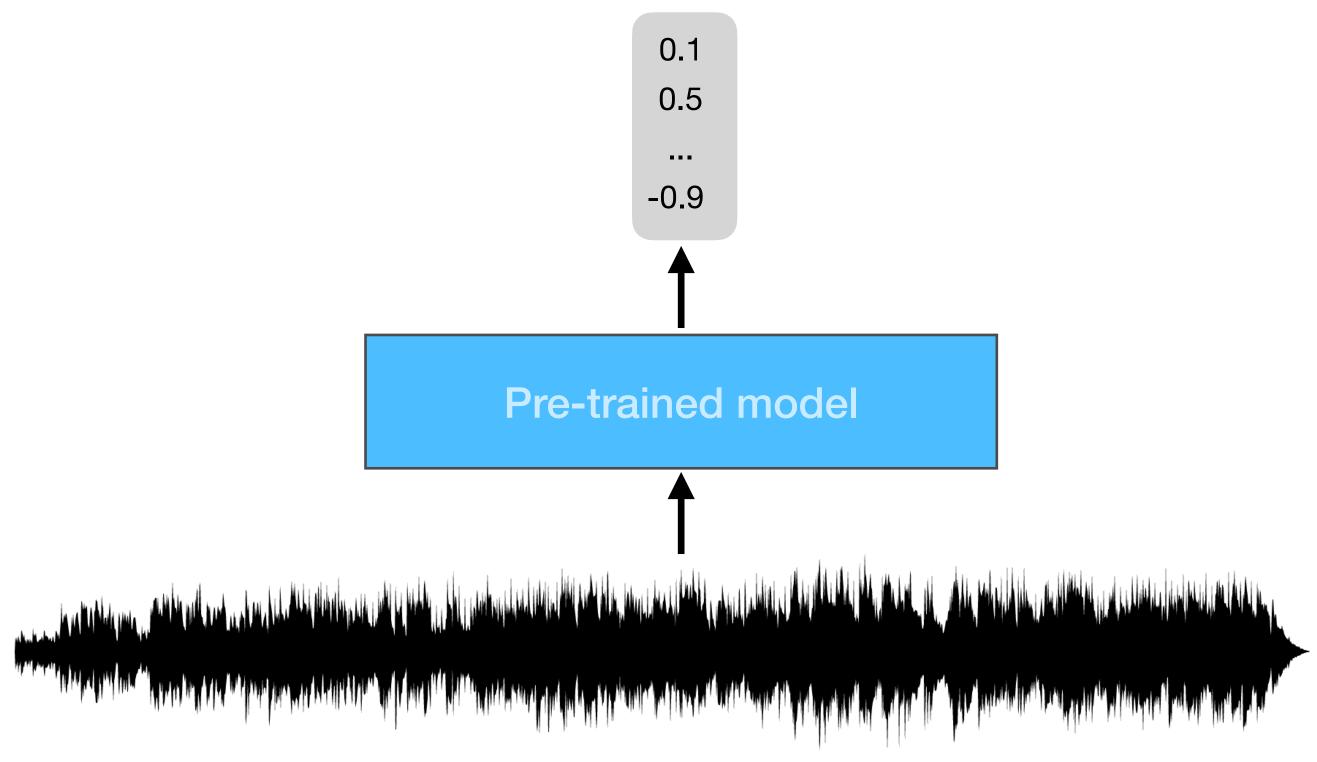
Pre-training in Computer Vision



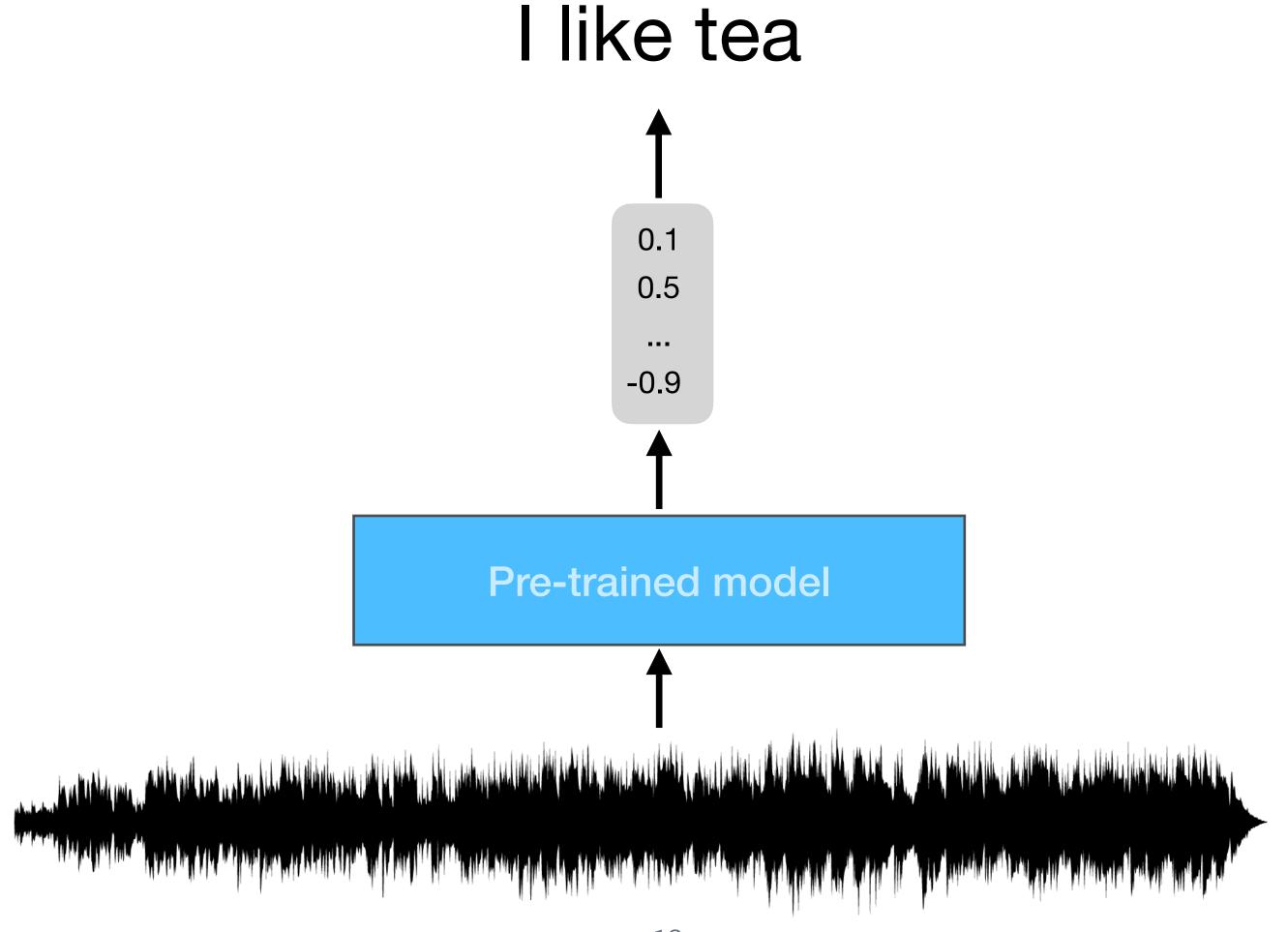
Unsupervised / Self-supervised Pre-training

- Learn good representations without labels
- NLP: Predict occluded parts of sentence
- Vision: make representations invariant to augmentations

Learning good representations of audio data from unlabeled audio

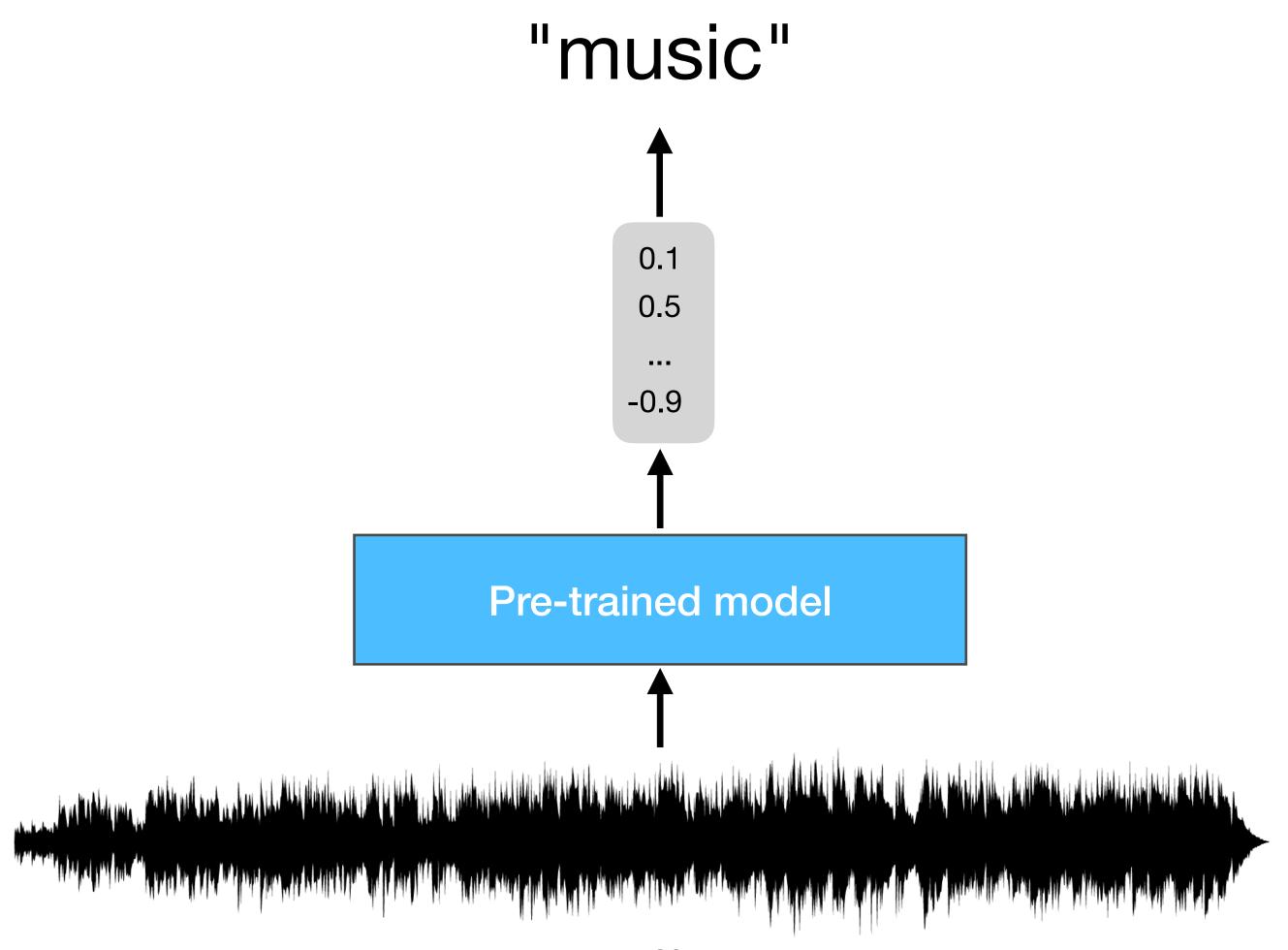


Speech recognition

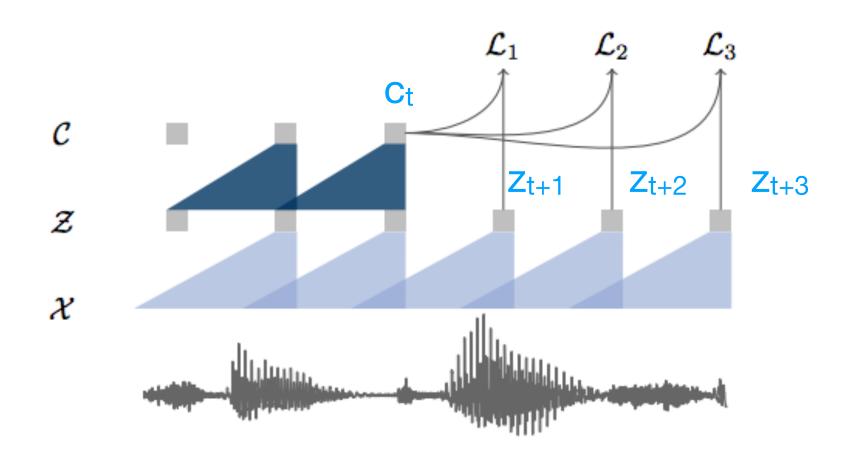


Ich mag Tee 0.1 Speech translation 0.5 -0.9 Pre-trained model

Audio event detection

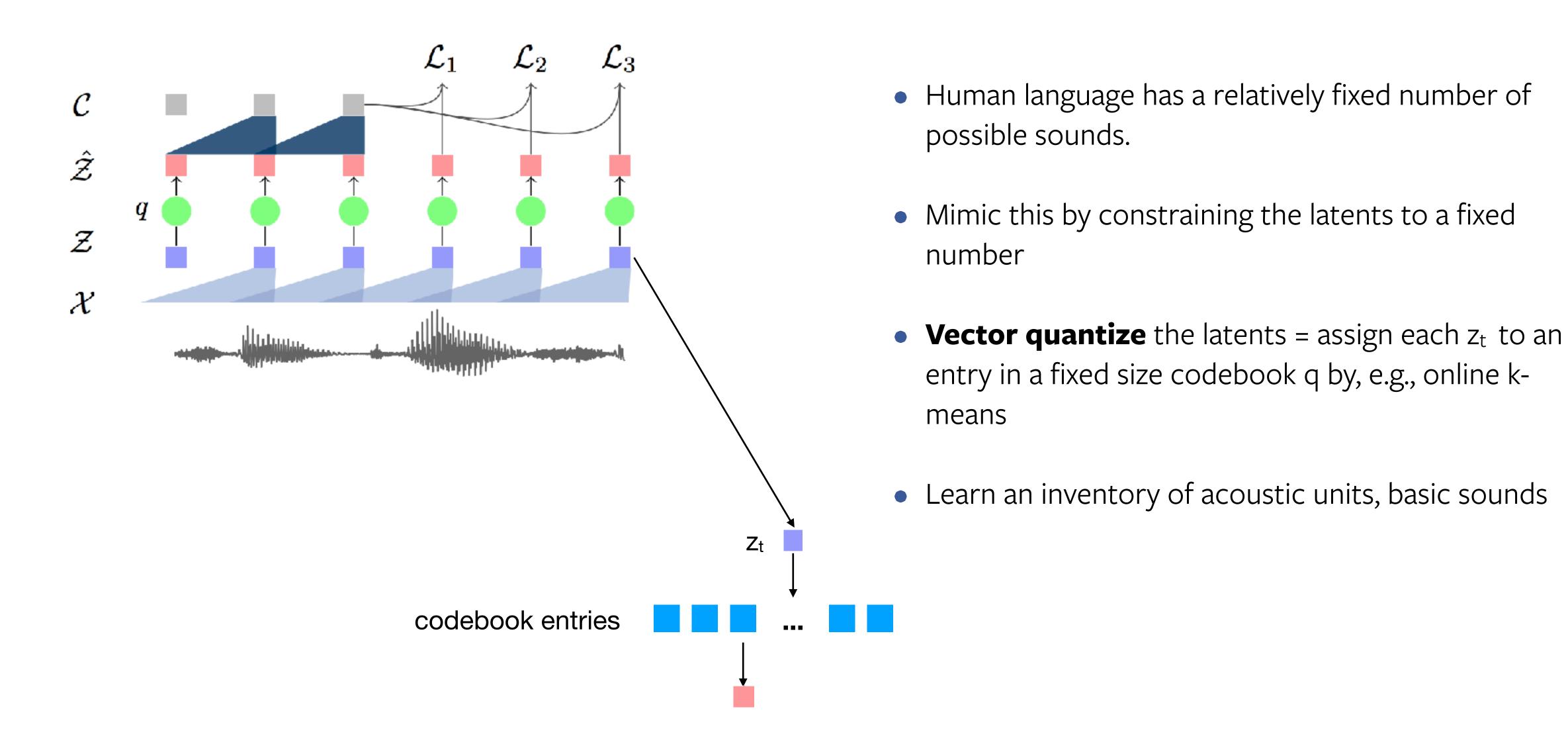


wav2vec: Latent speech audio representations

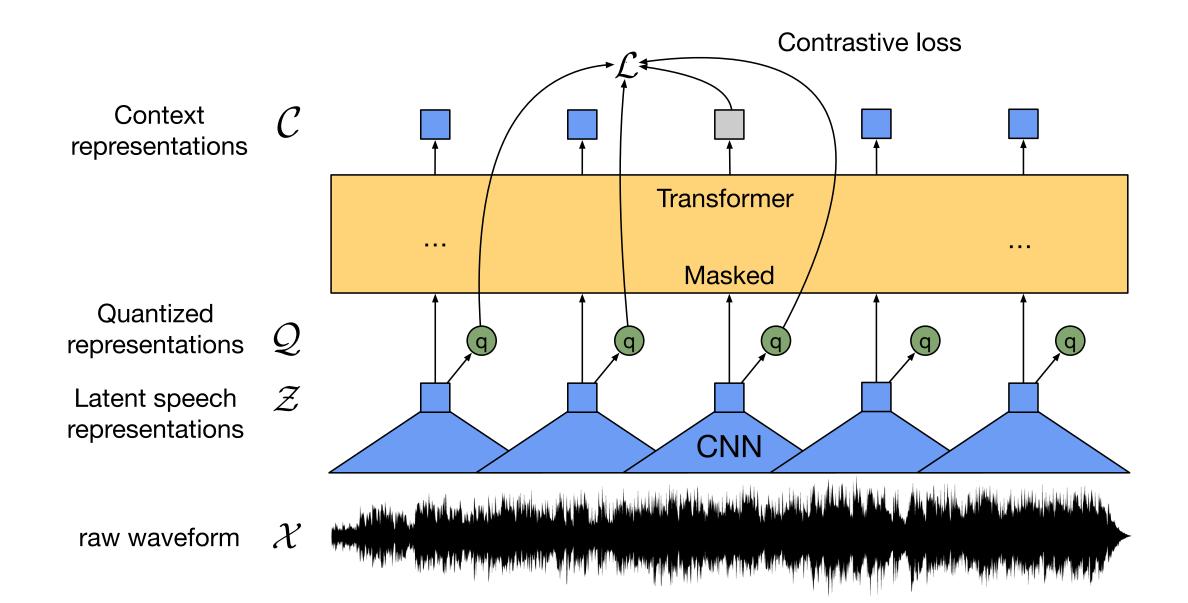


- CNN encodes waveform as latent representations z_t spanning 25ms each
- Another CNN builds context representations c_t of ~300ms
- Training: predict future latents $p(z_{t+1}|c_t)$, $p(z_{t+2}|c_t)$, ...
- Inference: feed c_t into traditional ASR system instead of logmel etc.

vq-wav2vec: Learning discrete latent speech representations

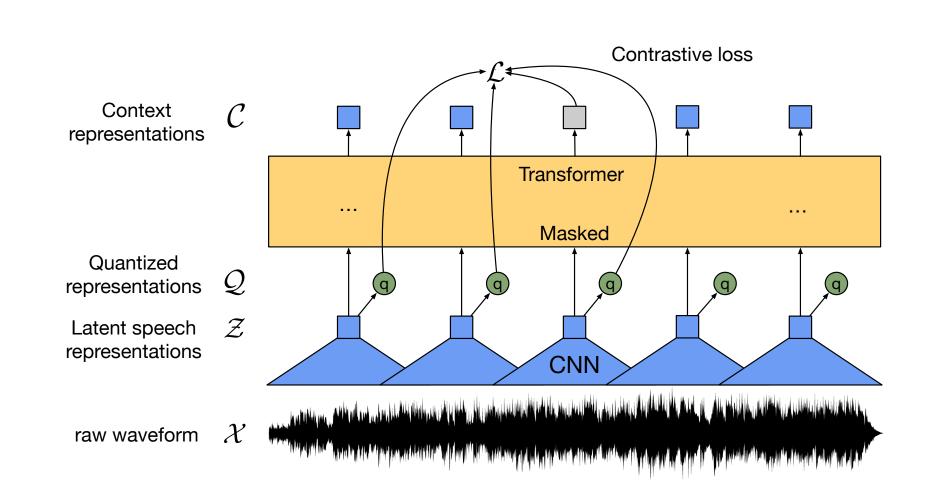


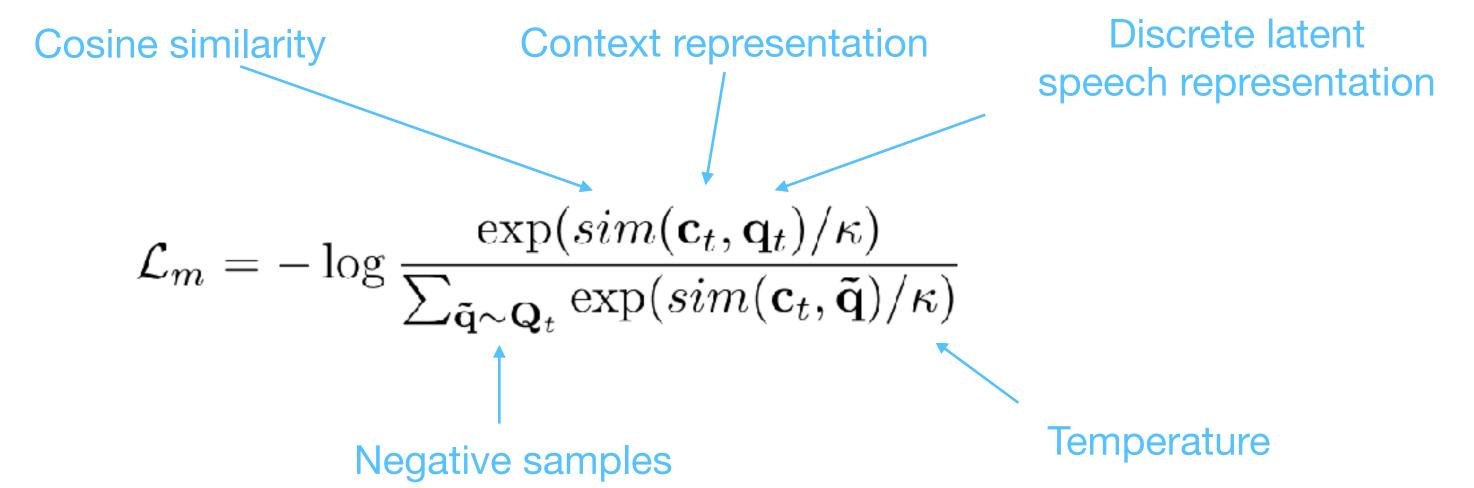
wav2vec 2.0



- Bi-directional contextualized representations
- Vector quantized targets for training

Objective

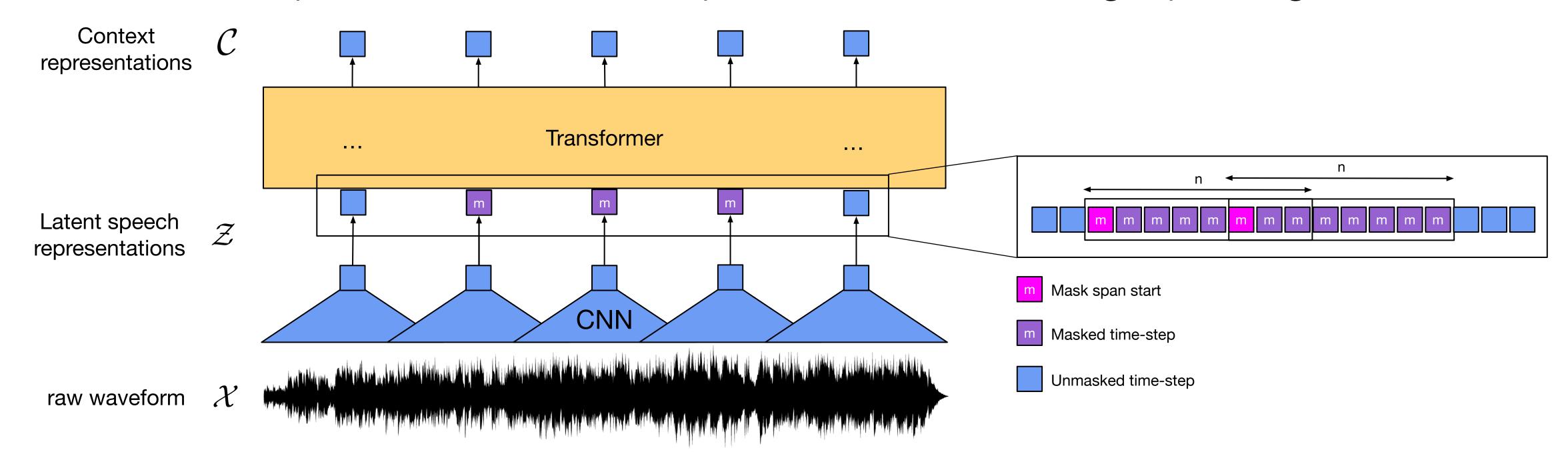




Codebook diversity penalty to encourage more codes to be used

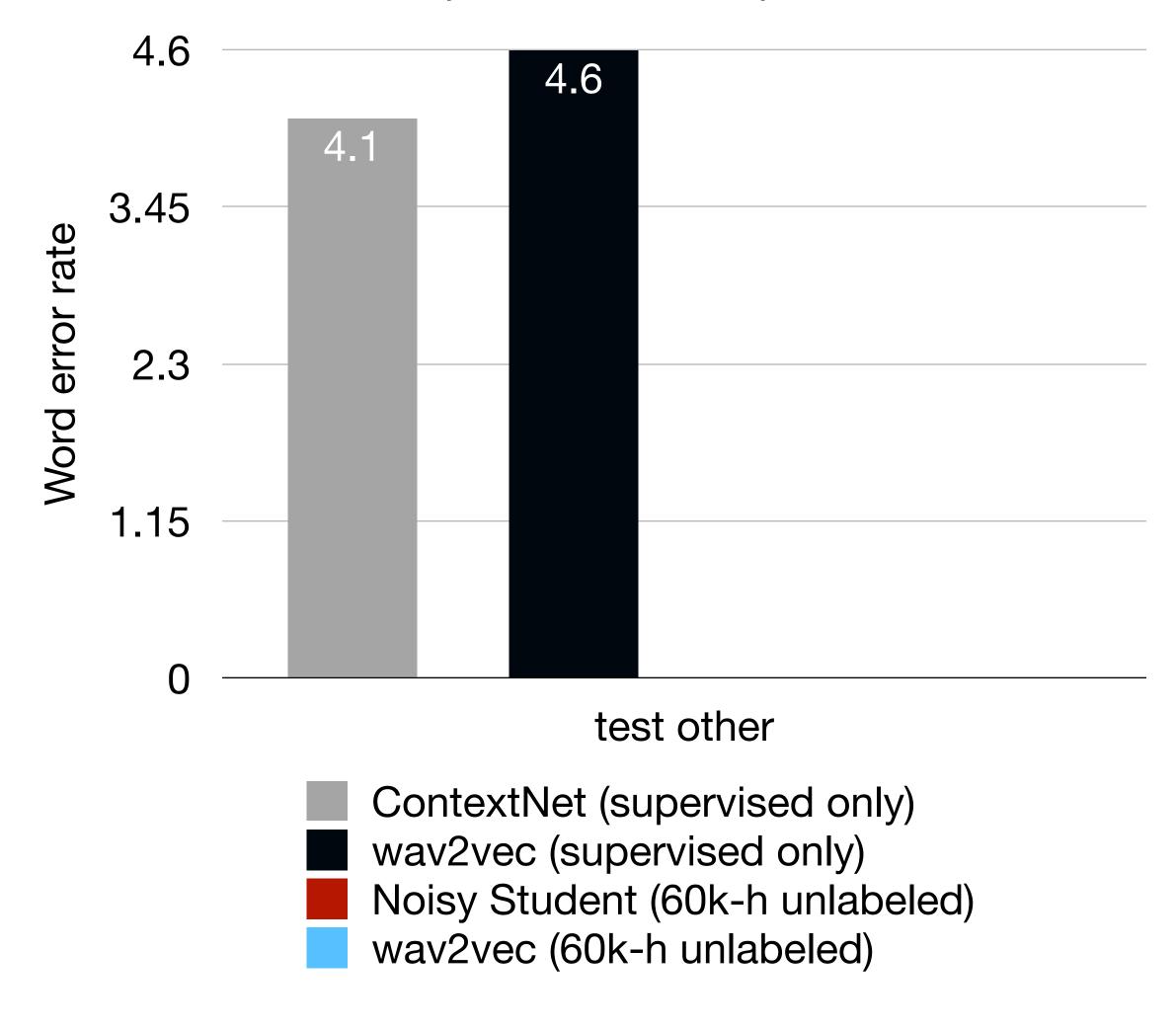
Masking

- Sample starting points for masks without replacement, then expand to 10 time-steps (1 time-step is 25ms but 10ms stride)
- Spans can overlap
- For a 15s sample, ~49% of the time-steps masked with an average span length of ~300ms

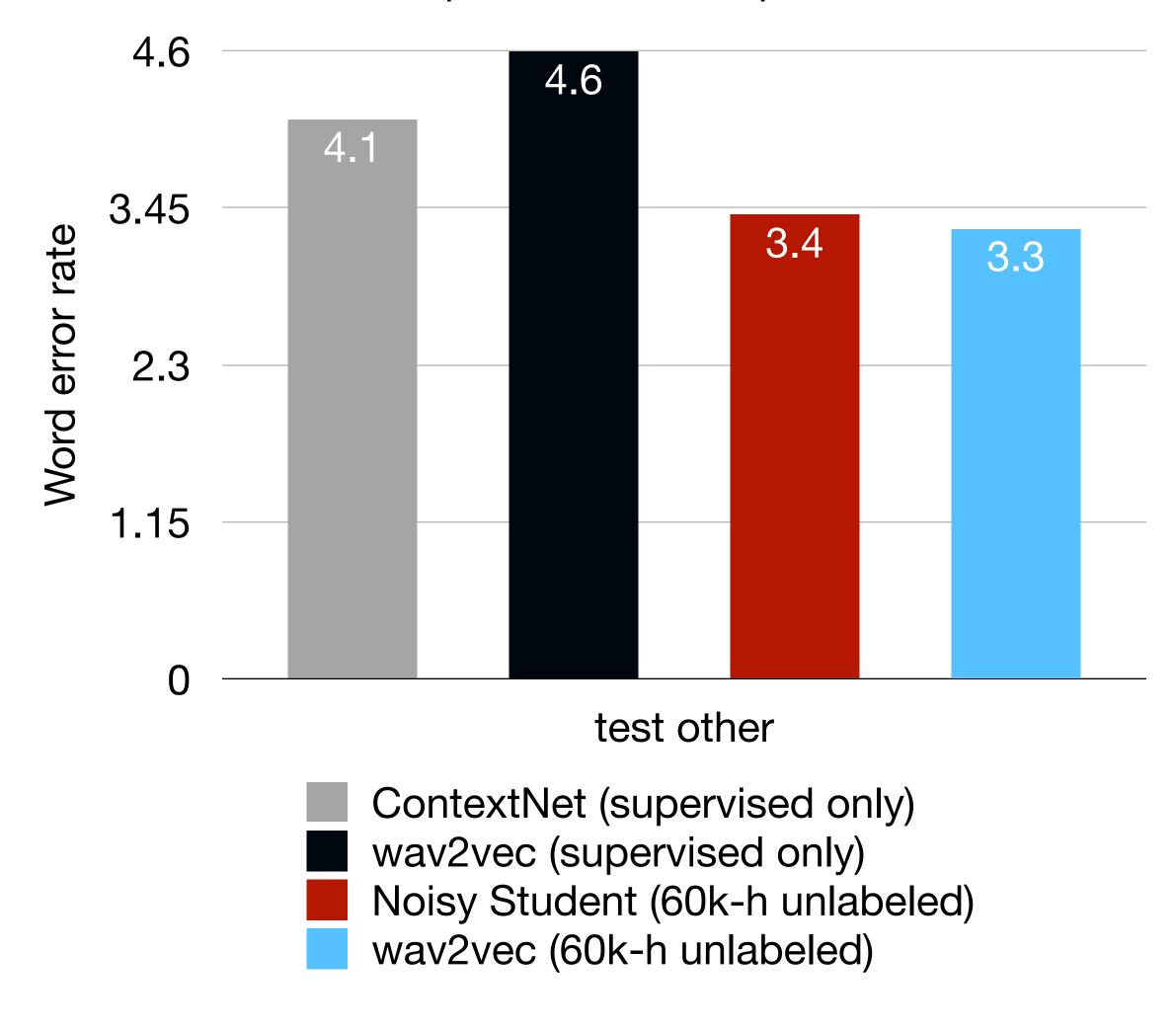


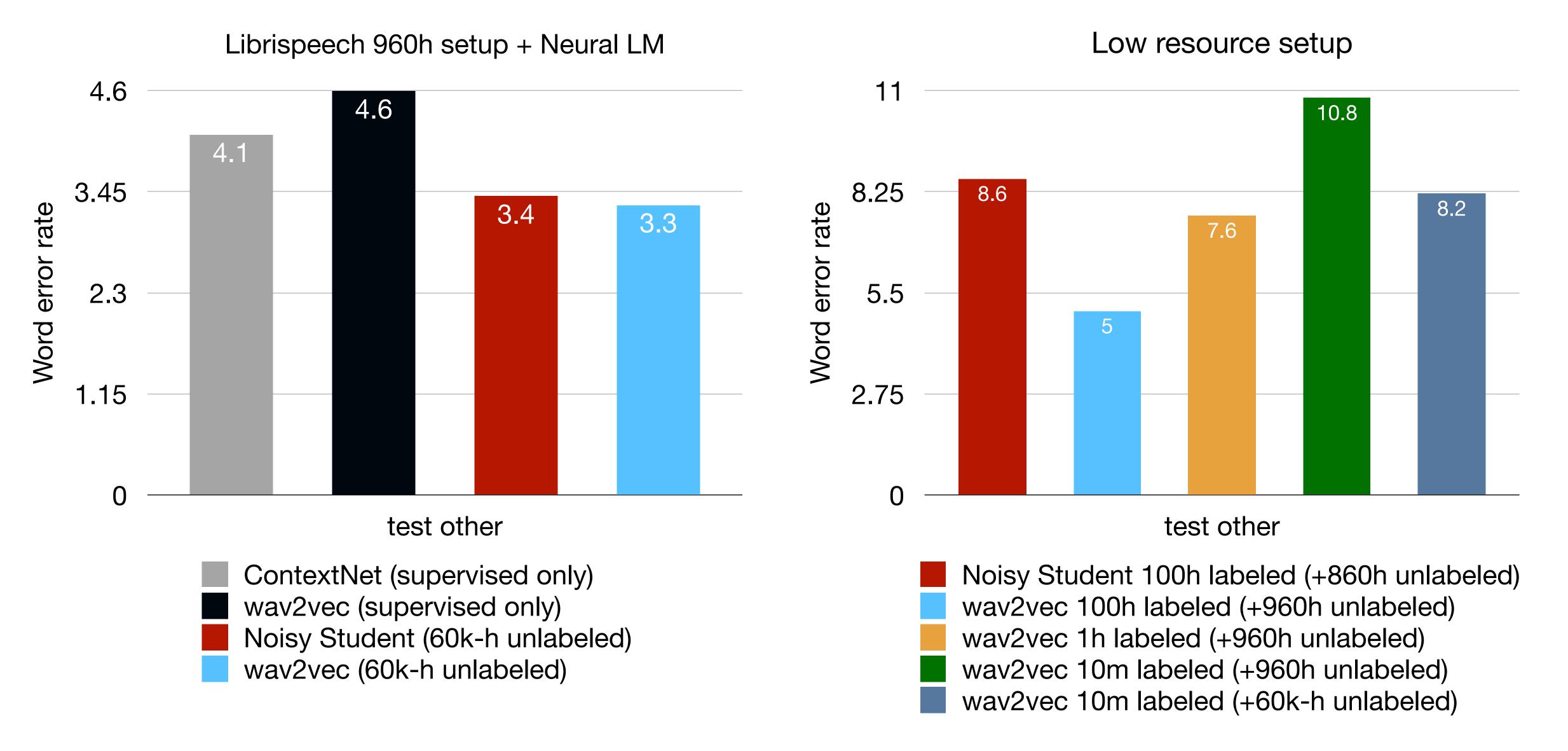
Fine-tuning

- Add a single linear projection on top into target vocab and train with CTC loss with a low learning rate (CNN encoder is not trained).
- Use modified SpecAugment in latent space to prevent early overfitting
- Uses wav2letter decoder with the official 4gram LM and Transformer LM

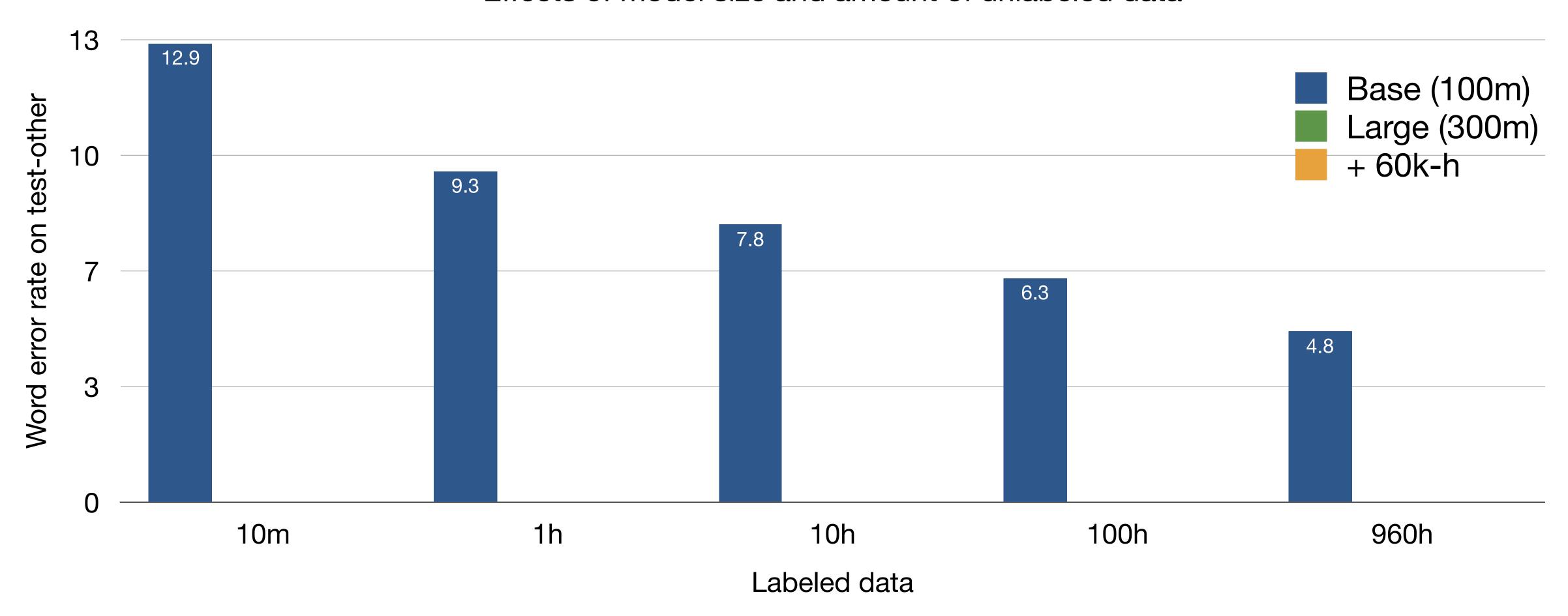


Librispeech 960h setup + Neural LM

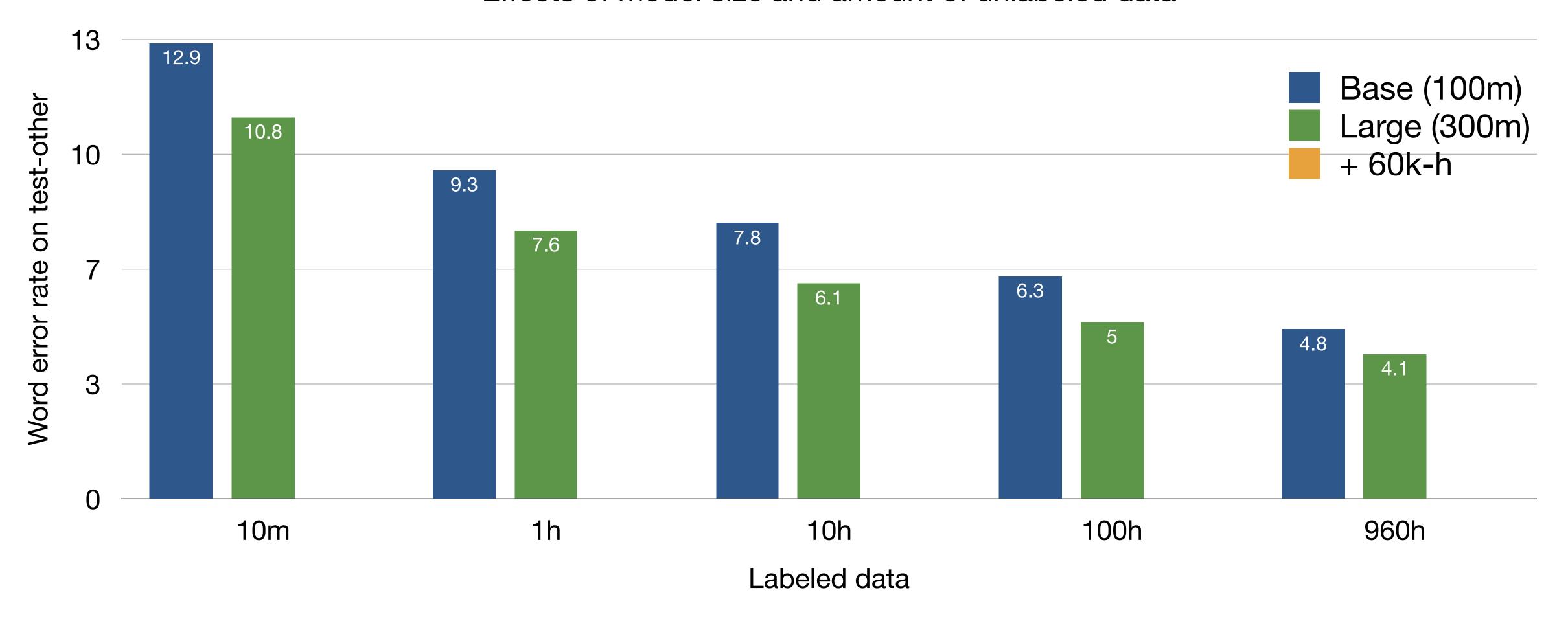




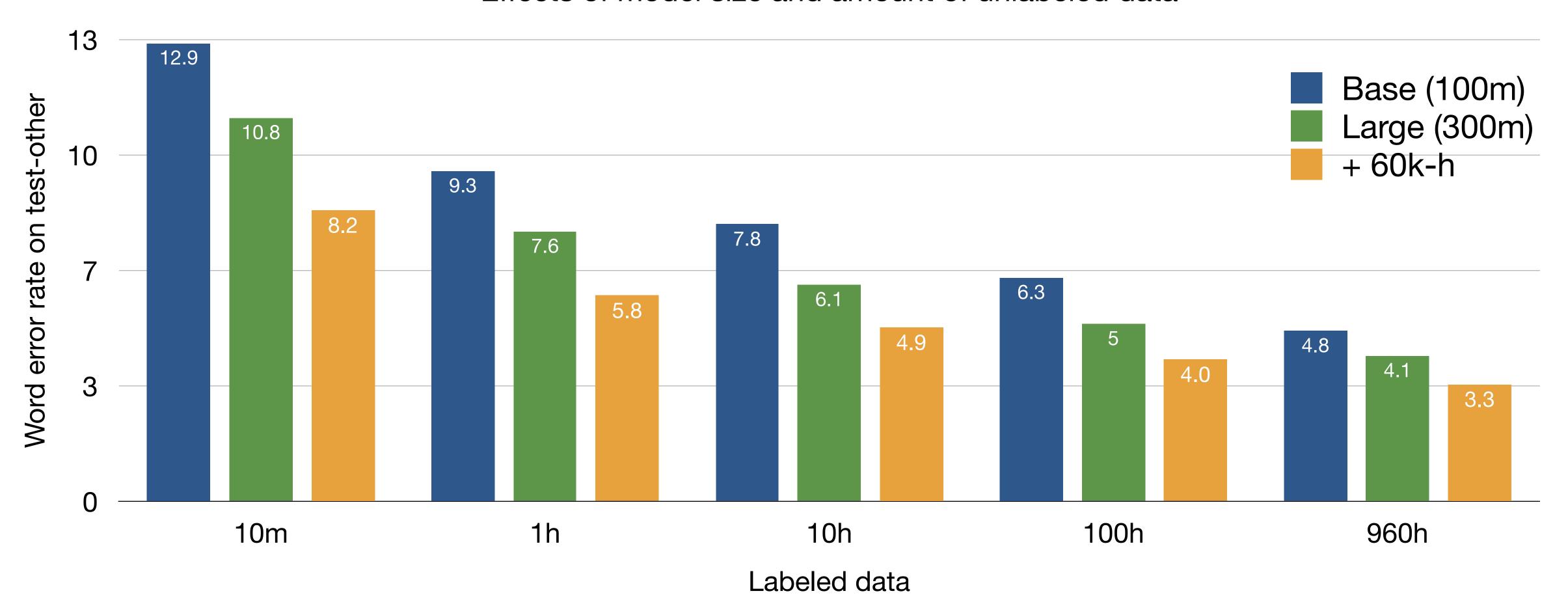
Effects of model size and amount of unlabeled data



Effects of model size and amount of unlabeled data



Effects of model size and amount of unlabeled data



Examples (10 min labeled data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument

HYP (w/LM): she ceased and LUCAN gave assent won by her gentle argument

REF: she ceased and lakshman gave assent won by her gentle argument

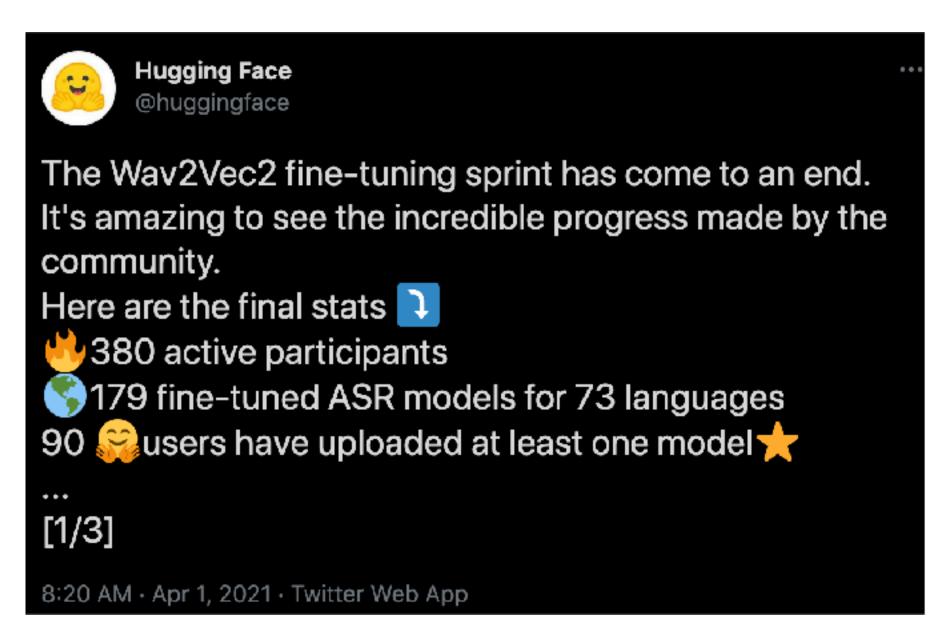
HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY way and CISED him THRE times

HYP (w/LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him three times

wav2vec on HuggingFace

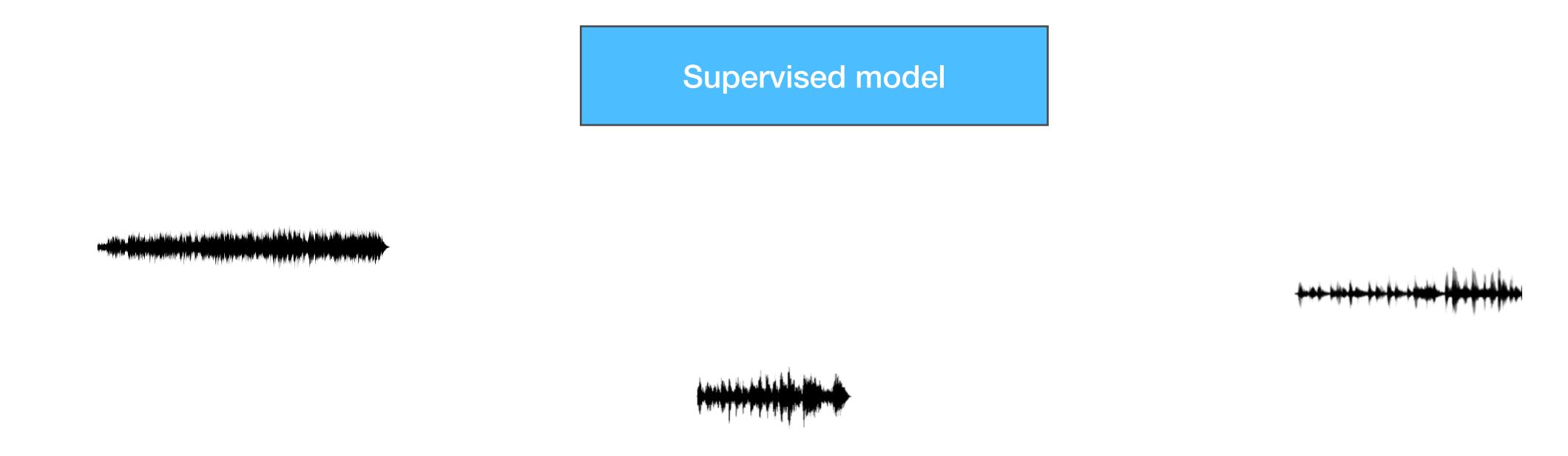
- HuggingFace is a popular NLP model zoo
- HuggingFace community fine-tuned our models to do speech recognition in 73 languages.



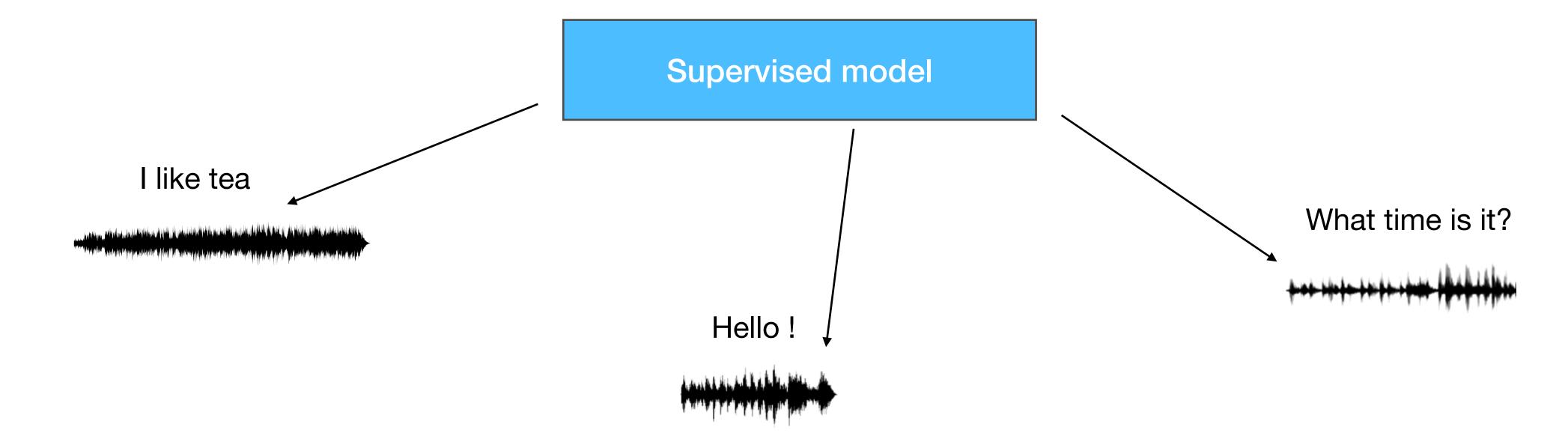
Self-training very successful in speech recognition: generate pseudo-labels

Supervised model

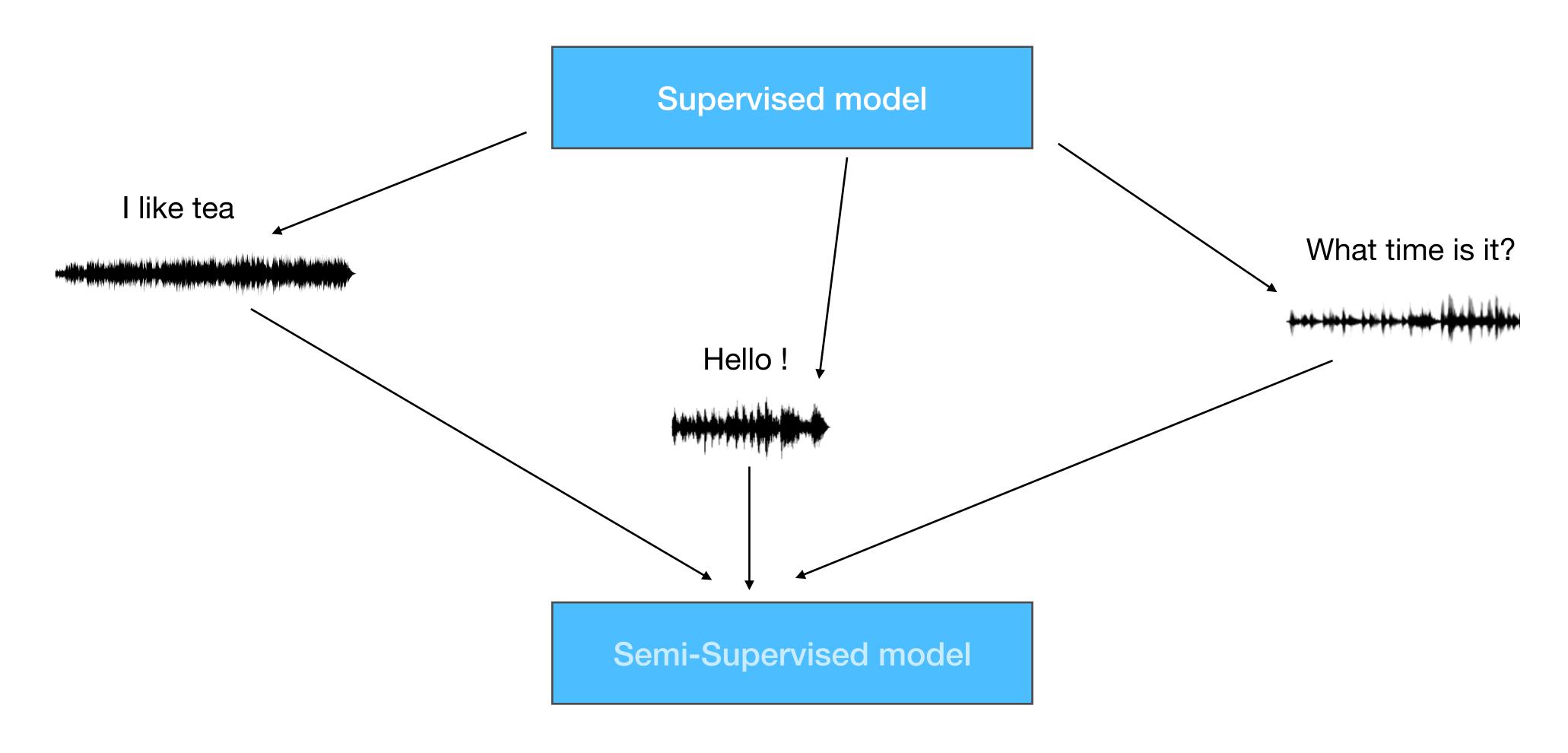
Self-training very successful in speech recognition: generate pseudo-labels



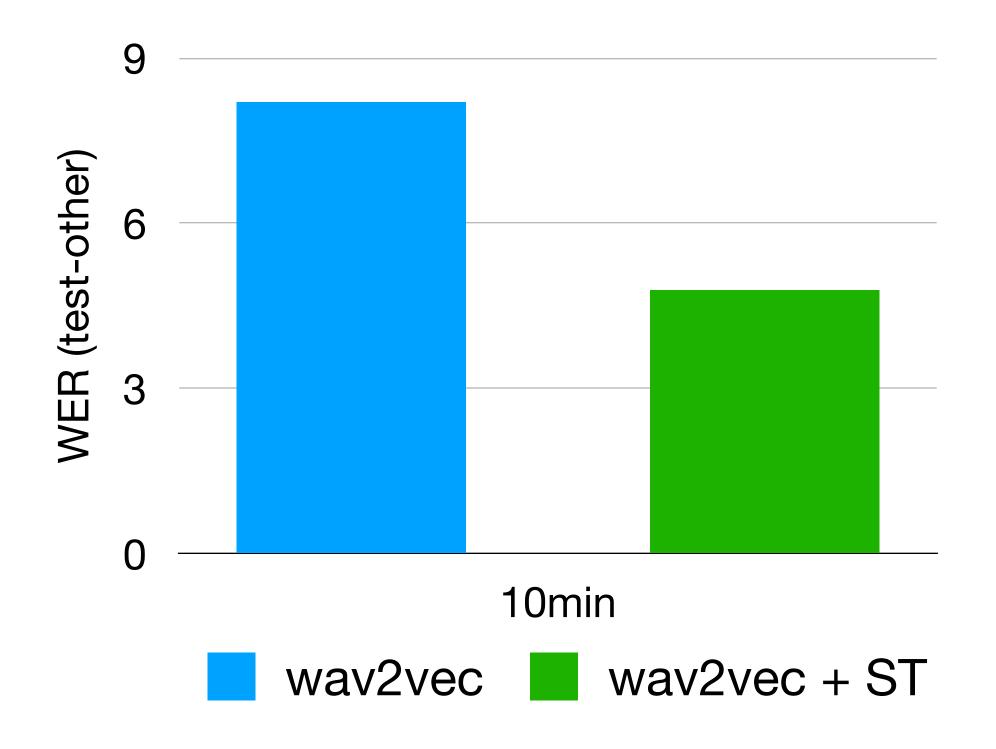
Self-training very successful in speech recognition: generate pseudo-labels

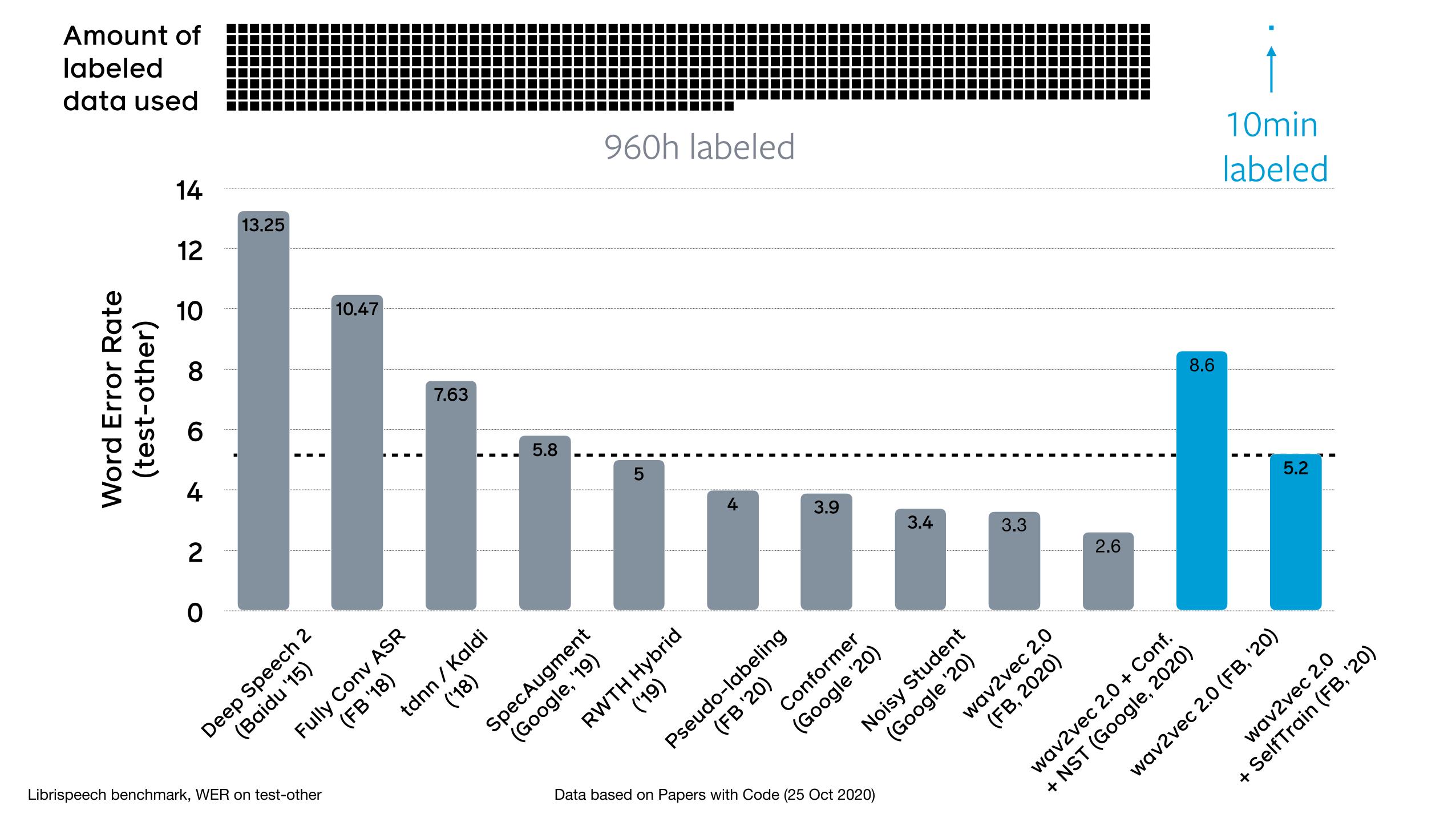


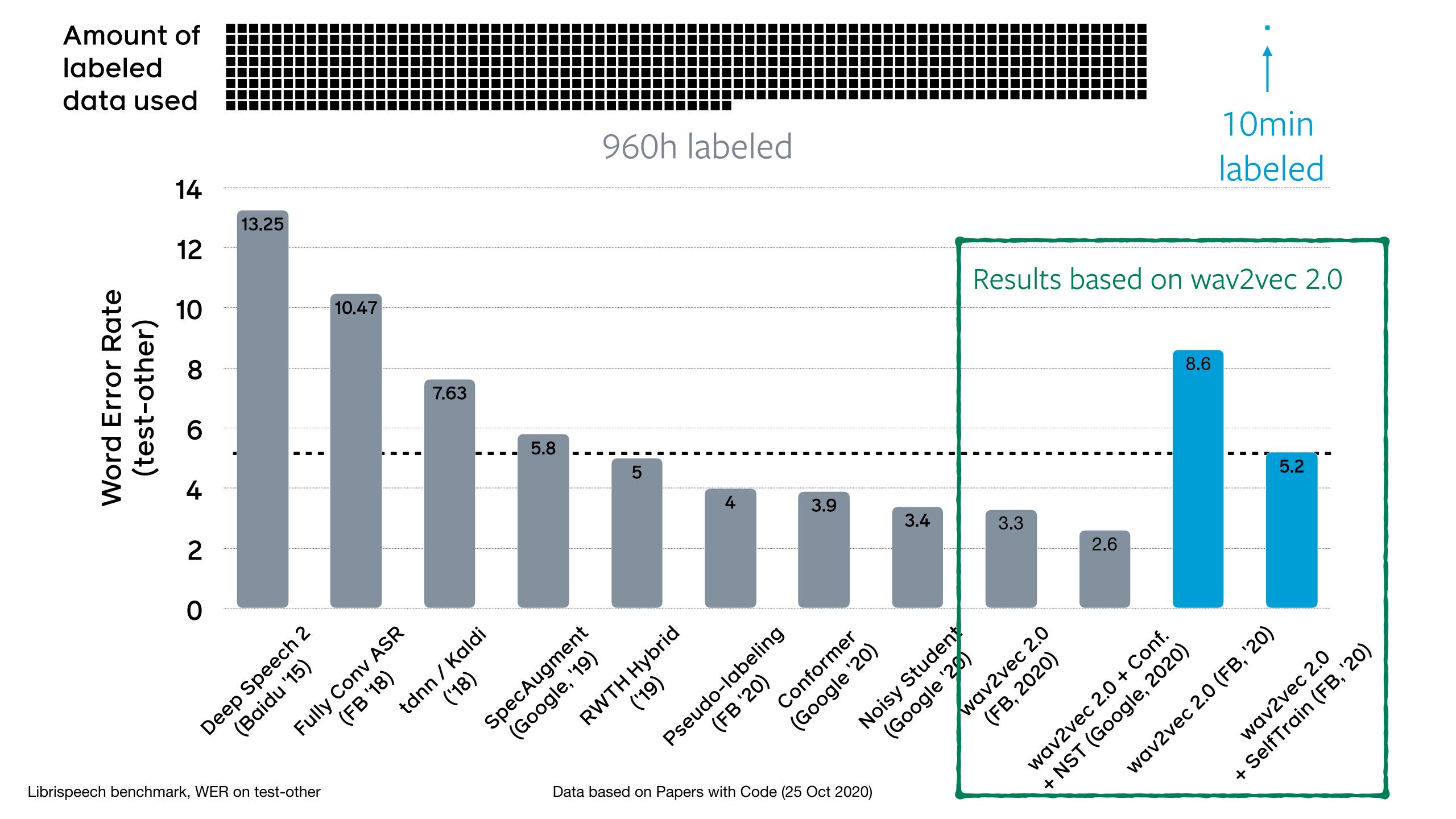
Self-training very successful in speech recognition: generate pseudo-labels



- Self-training very successful in speech recognition: generate pseudo-labels
- Do both have the same effect?
- Recipe: pre-train on the unlabeled data, pseudo-label, fine-tune pre-trained model







XLSR: cross lingual speech representation learning with wav2vec

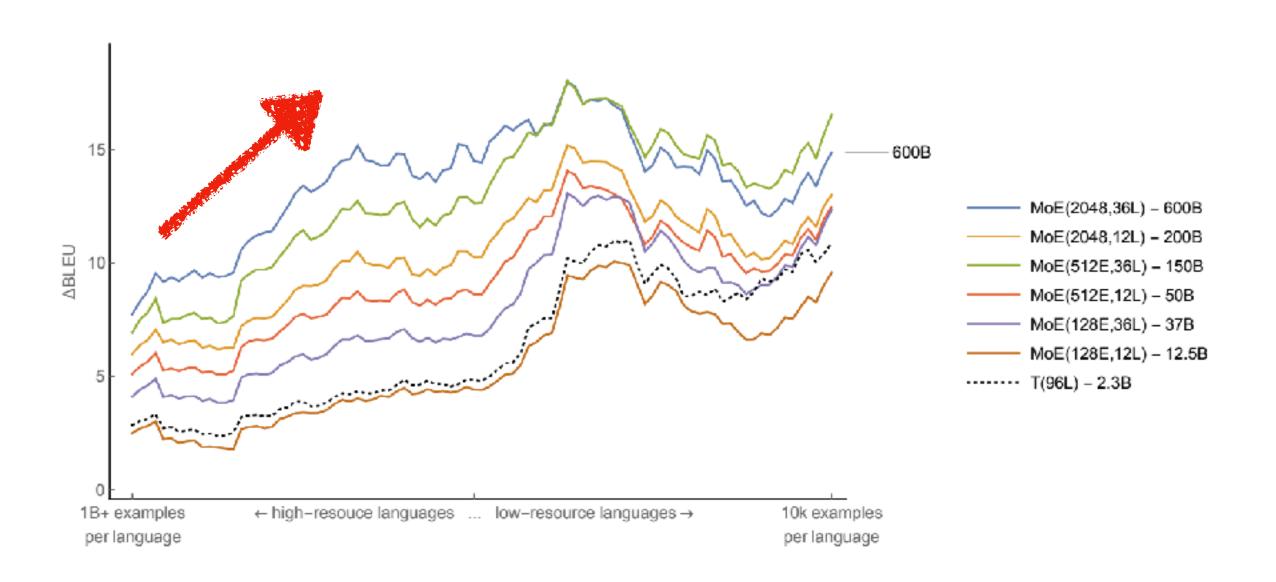
Why cross-lingual self-supervised learning

- Little labeled data -> little unlabeled data
- Leverage unlabeled data from high-resource languages
- To improve performance on low-resource languages
- One model for each of the 6500 languages, for each domain? No.
- Instead: one pertained model for all languages

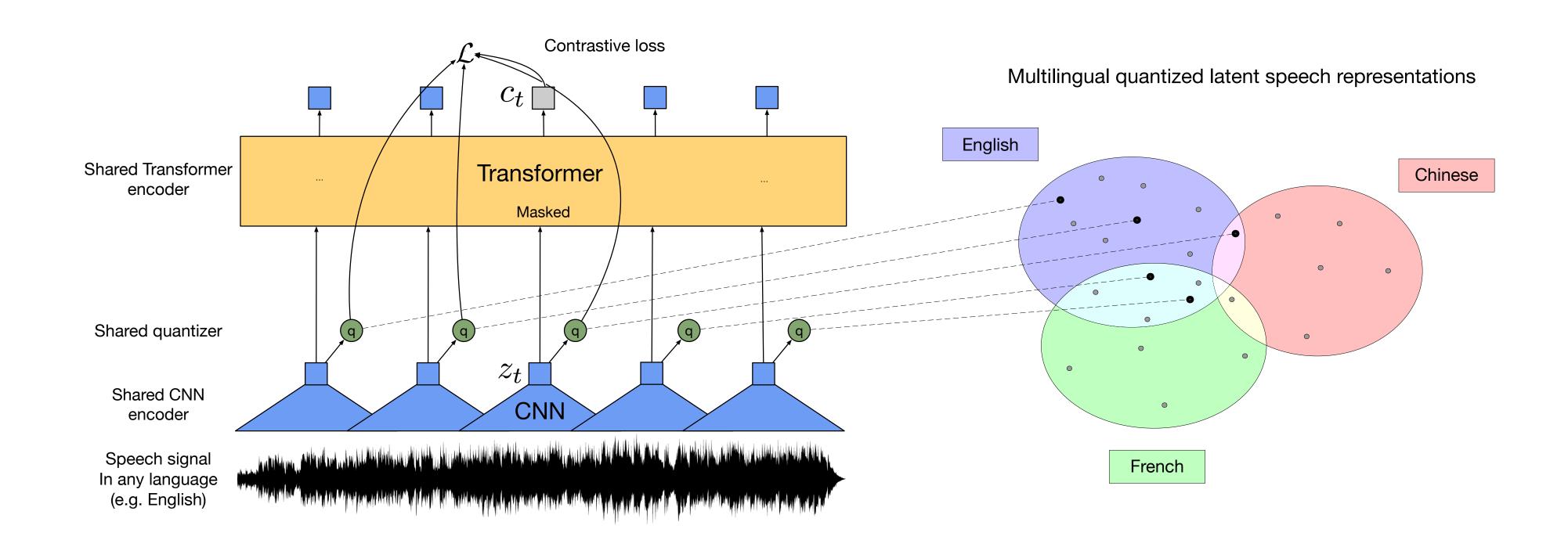
Meanwhile in multilingual research

Cross-lingual understanding (XLU)

Multilingual machine translation



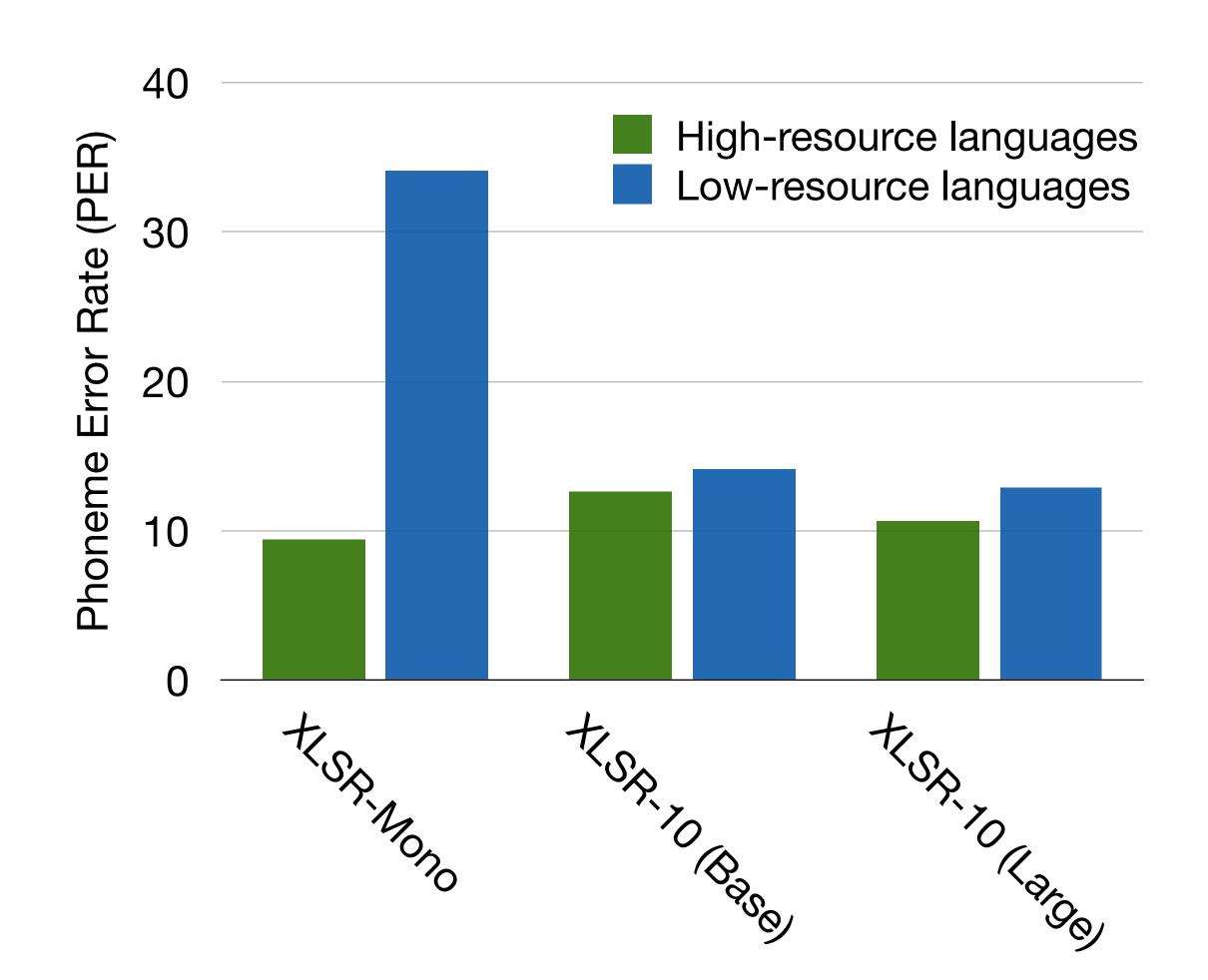
XLSR: cross lingual speech representation learning with wav2vec



XLSR: Results - cross-lingual transfer

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

CommonVoice results:

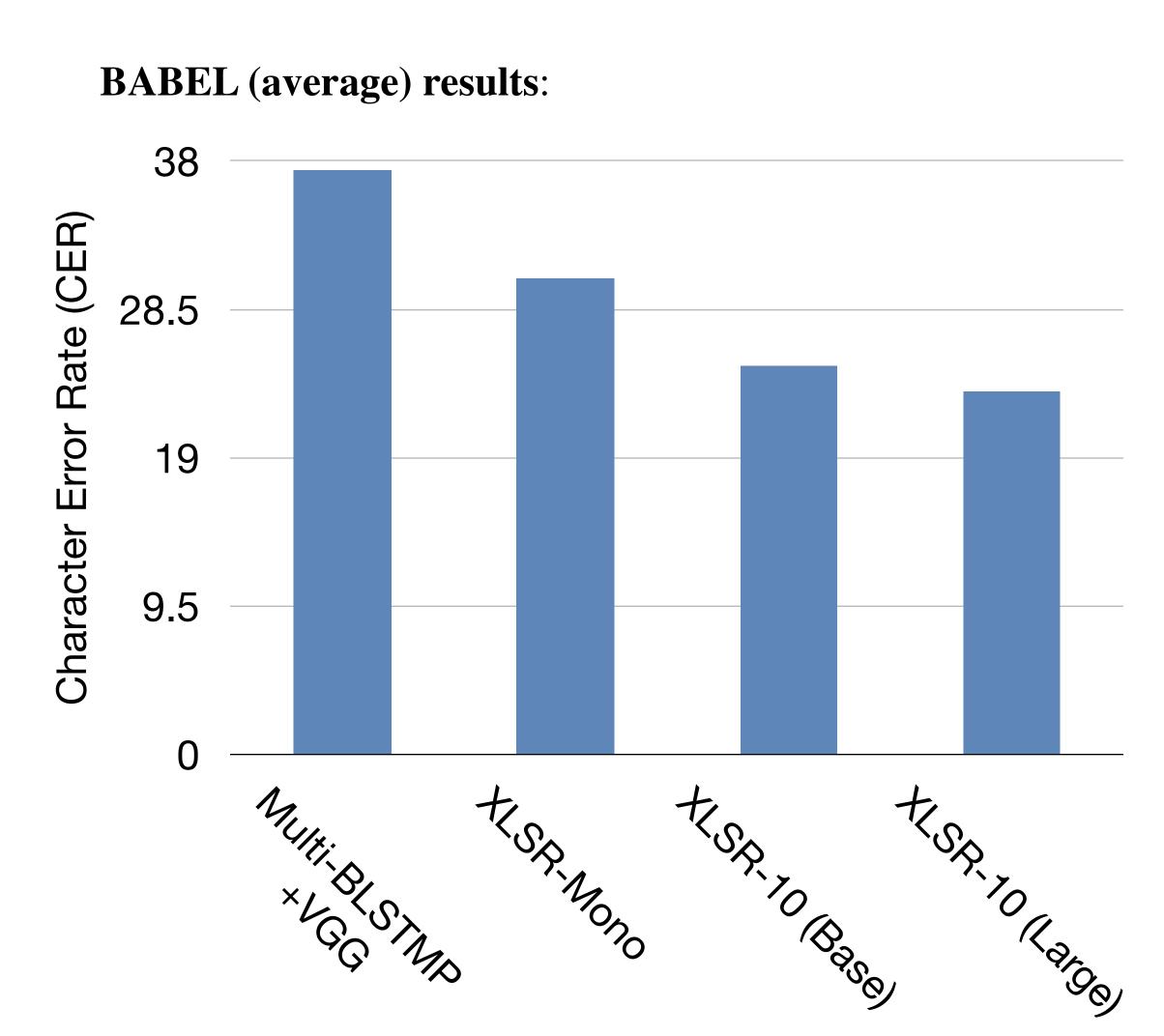


XLSR: Results - cross-lingual transfer

XLSR significantly outperforms previously published approaches on CommonVoice/BABEL

40 High-resource languages Phoneme Error Rate (PER) _ow-resource languages 30 20 10 trop to Basa, trop, to large, trop, Mono

CommonVoice results:



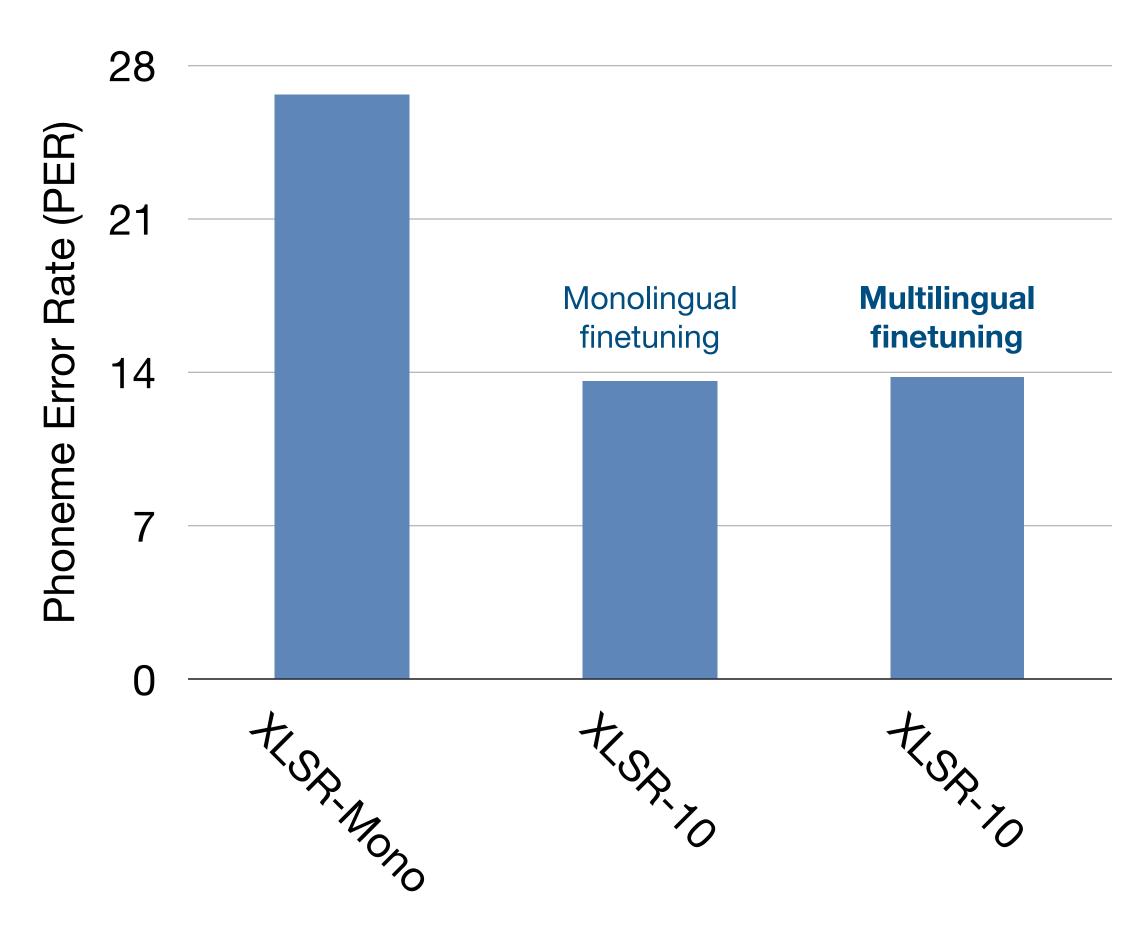
XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

XLSR: Results - multilingual fine-tuning

Multilingual finetuning leads to one model for all languages with little loss in performance

CommonVoice results:



XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transfer

Similar higher-resource language data helps the most for low-resource language

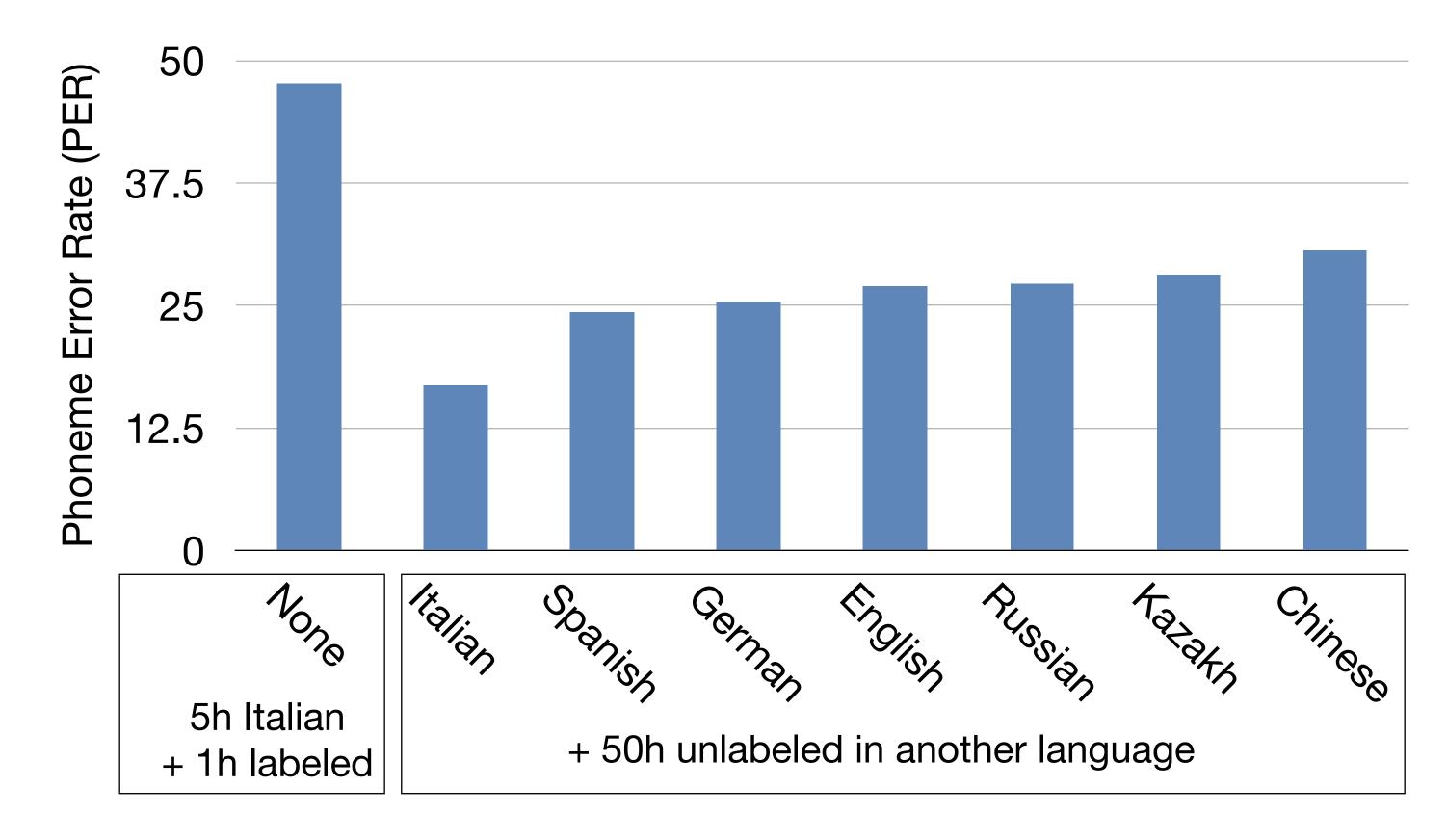
5h Italian + 1h labeled

+ 50h unlabeled in another language

XLSR: Results - impact of language similarity

Language similarity plays an important role in cross-lingual transfer

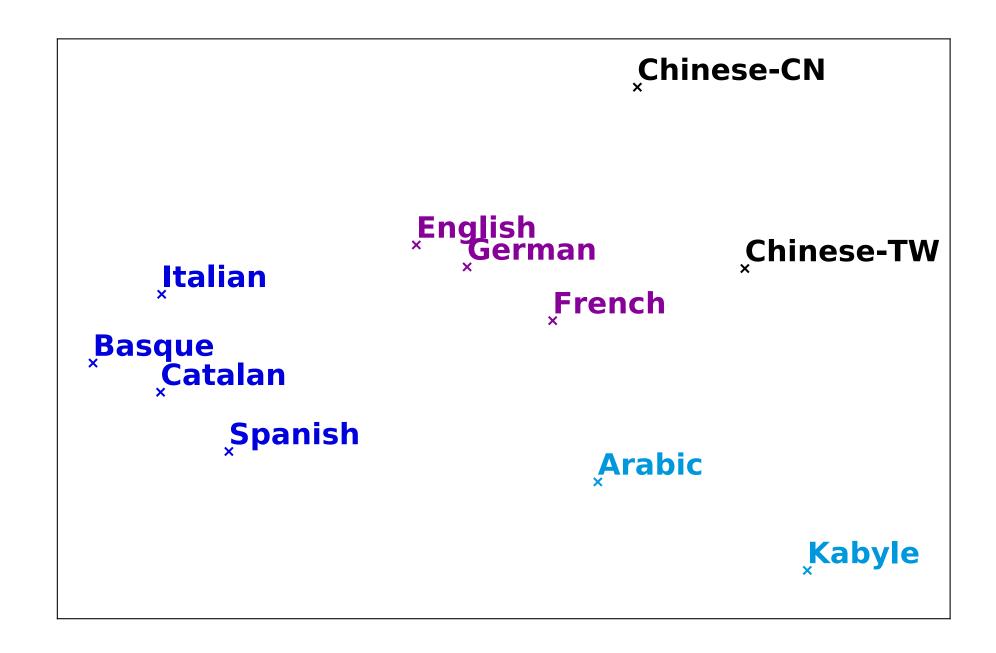
Similar higher-resource language data helps the most for low-resource language



XLSR: Analysis of discrete latent speech representations

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together



```
Tokpisin

Kăzakh

Lao

Cebuano

Kurmanji

Georgian

Turkish

Tagalog

Swahili

Zulu

Haitian

Pashto

Tamil
```

Conclusion

- For the first time, pre-training for speech works very well in both low-resource and high-resource setup.
- Cross-lingual training improves low-resource languages.
- Pre-training and self-training are complementary.
- Using only 10 minutes (48 utterances) of transcribed data rivals best system trained on 960h from 1 year ago.
- Code and models are available in the fairseq GitHub repo + Hugging Face.

Thankyou

Alexei Baevski

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Anuroop Sriram

Naman Goyal

Wei-Ning Hsu

Michael Auli

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve