Topics:
e Linear Classification, Loss functions

e Gradient Descent

CS 4803-DL / 7643-A
ZSOLT KIRA



* Assignment 1 out today!

e Start early, start early, start early!

e Piazza: Enroll now! https://piazza.com/class/kisselshfiz18c (Code: DL2021)

* NOTE: There is an OMSCS section with a DIFFERENT piazza. Make sure you
are in the right one

e Office hours start this week



Parametric Model _ _ .
Parametric — Linear Classifier

Explicitly model the function f : X - Y in
the form of a parametrized function .
f(x,W) =y, examples: f(x' W) =Wx +b

Logistic regression/classification Procedure:

Calculate score per class for
example

Neural networks

Return label of maximum score
(argmax)

Capacity (size of hypothesis class) does
not grow with size of training data!

Learning is search

) Supervised Learning Gegrata |




Class Scores

Input (and representation)
Functional form of the model ] l

Including parameters Car Coffee Bird

B Cup
Performance measure to Improve

Loss or objective function
all =

Algorithm for finding best parameters
Class Scores

Optimization algorithm
Model I
M} Ij‘> f(x,W)o= Wit E> m

Data: Image Features: Histogram Q Car Coffee Bird

Cup

) Components of a Parametric Model Gegutia)



fx,w) =y

Classifier Output

Input  Weights (scalar or vector)
(vector)

Input: Continuous number or vector
Output: A continuous number
For classification typically a score

For regression what we want to regress to (house prices,
crime rate, etc.)

w is a vector and weights to optimize to fit target function

) Model: Discriminative Parameterized Function Ge‘%{;{ﬁ&



Neural Network

Linear
classifiers

This image is CCO 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Deep Learning as Legos Gograta)



What is the simplest function
you can think of?

Our model is:

y=mx+b
ANEET f(x,w)=w-x+0b
\\+x v x5

S NT 2

Classifier =~ Weights Bias
> Result (scalar)

/ X Input

(Note if w and X are column vectors we often show this as w’ x)

Image adapted from:
https://en.wikipedia.org/wiki/Linear_equation#/
media/File:Linear_Function _Graph.svg

) Simple Function Gecraial



Linear Classification and
Regression

Simple linear classifier:

Calculate score:
fx,w)=w-x+b

Binary classification rule
(w is a vector):

_ )1 iff(x,w)>=0
0 otherwise

For multi-class classifier take
class with highest (max) score
f (x; W) =Wx+b Georgia [&

Tech




Idea: Separate classes via
high-dimensional linear
separators (hyper-planes)

One of the simplest
parametric models, but
surprisingly effective

Very commonly used!

Let’s look more closely at
each element

) Linear Classification and Regression Gegutin)



Data: Image Class Scores

Model
| W)=Wx+b E> I

Car Coffee Bird

(X117 Cup
X12
X11  X12 X1n
X21
X21 X2 Xon
X=1: : - : X =|X22
xnl an xnn Flatten
xnl
leTl

To simplify notation we will refer to inputs as x; ---x,,, wherem =n X n

) Input Dimensionality Gograla



Model

f(x,W)=Wx+b

Classifier for class 1 Wiz Wiz 0 Wim [ X1 ] b4
Classifier for class 2 Wz1 Wp2 ° Wopm X2 n b,
Classifier for class 3 W31 W3y o Wiy : b,
_xm_ - -
w X b

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

) Weights Gegrata |




We can move Model

the bias term f(x,W)=Wx+b

into the weight

matrix, and a “1” _ _

at the end of the Wip Wiy o wig by [[2

input Woi Wy =+ Wy by x:z
. W31 Wz W3m bs ||

Results in one Xm

matrix-vector L1

multiplication! w X

) Wei g hts Gec_i_;gcig [61




Example with an image with 4 pixels, and 3 classes (cat/dog/ )

Stretch pixels into column

56
0.2 | -05| 0.1 2.0 11 -96.8 | Cat score
231
15|13 | 21 | 0.0 +| 3.2 | = | 437.9 | Dog score
24
Input image 0 [025] 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Gegraia)




airplane )‘?=2‘.-i.
automobile [l & EE&@E%
oird SN A T
cat @‘Eﬂgﬂ
deer !,‘,— EEIIIE
dog  BEREFHEE AN
frog 7' oGRS E
horse i i I 0 X 1 S 5 IR T
ship R L S e e
truck aE Ll W sl

plane

Visual Viewpoint

We can convert the
weight vector back into
the shape of the image
and visualize

truck

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Interpreting a Linear Classifier

Georgia
Tech

Ih



Geometric Viewpoint

car classifier

fx,W)=Wx+b

airplane classifier @
e A
: IS5 :." "#
>
PSSR
"‘_.“ S /

deer classifier

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Interpreting a Linear Classifier Gograla)




Class 1: Class 1: Class 1:

number of pixels > 0 odd 1<=L2norm<=2 Three modes
Class 2: Class 2: Class 2:
number of pixels > 0 even Everything else Everything else

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Hard Cases for a Linear Classifier Gegraia

/




Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

| [
| |
- - I -
Algebraic : Visual | Geometric
Viewpoint | Viewpoint : Viewpoint
| [
|
Fx, W) = Wx : One template i Hyperplanes
’ : per class cutting up space
| I
o com I plane  car bird cat deer I \ -] =
I . | I BE
s HERAN A
s nlesfoo] =] ] [m]owm T 1T I & | ®
EEE- AEEEE et
[
: | deer classifier
| I
| [

Linear Classifier: Three Viewpoints SEE




Performance
Measure for

a Classifier




Class Scores

Input (and representation)
Functional form of the model l

Including parameters Car Coffee Bird
. Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm

Q

Class Scores

> - m
fx,W)=W,+b

Data: Image Features: Histogram Q Car Coffee Bird

Cup

) Components of a Parametric Model Gegutia)



The output of a classifier can
be considered a score

For binary classifier, use rule: Class Scores
y = 1 iff(xw)>=0
0 otherwise Model

fx,W)=Wx+b

Can be used for many
classes by considering
one class versus all the
rest (one versus all)

Car Coffee Bird
Cup

For multi-class classifier can
take the maximum

) Classification using Scores Gegutia)



Several issues with scores:

Not very interpretable (no

bounded value) s =f(x,W) Scores

We often want probabilities Sk

Softmax
Z]. e®i Function

More interpretable P(Y = k|X =x) =

Can relate to probabilistic
view of machine learning

We use the softmax function to
convert scores to probabilities

) Converting Scores to Probabilities Gograla




We need a performance measure to

optimize Given a dataset of examples:

{(x, yOIa

Where x; is image and

Penalizes model for being wrong

Allows us to modify the model to
reduce this penalty

Known as an objective or loss yi is (integer) label

function

In machine learning we use empirical
risk minimization

Loss over the dataset is a sum
of loss over examples:
1
L = NZ Li(f(x;, W), y:)

Reduce the loss over the training
dataset

We average the loss over the training
data

) Performance Measure Gegraia)




Multiclass SVM loss:
delta

Given an example (x; y;) ] — i + score>

where x; is the image and score for correct class
where y; is the (integer) label,

and using the shorthand for the s i}
scores vector: s = f(x;, W) Example: “Hinge Loss

the SVM loss has the form:

L_:z 0 ifsyizsj+1 Sy, |
i Sj— Sy, + 1 otherwise U

J#Yi Sj 1

— Z max(0,s; — sy, + 1) \ /
J#Yi

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Performance Measure for Scores Gegutia)



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x;y:) With some W the scores f(x,W)=Wx are:

where x; is the image and Dl
where y; is the (integer) label, '

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 1 3 2 2

L; = zj:tyi max(0,s; —sy, + 1| car 5.1 4.9 2.5

= max(0, 5.1-3.2 +1) frog -1.7 2.0 -3.1

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9) Losses:| 2.9
=29+0
=29 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x;y:) With some W the scores f(x,W)=Wx are:

where x; is the image and Dl
where y; is the (integer) label, '

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 1 3 2 2

L; = zj:tyi max(0,s; —sy, + 1| car 5.1 4.9 2.5

= max(0, 1.3 -4.9 +1) frog -1.7 2.0 | -3.1

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9) Losses: | 0.0
=0+0
=0 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.

Given an example (x;y:) With some W the sores f(x,W)=Wx are:

where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 1 3 2 2
Li=), —max(0s-s,+1D car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

L=(29+0+12.9)/3 _
e Losses: 2.9 0 12.9

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy




Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What happens to loss if
car image scores change a

bit? cat 3.2 1.3 2.2

No change for small values car 5 1 4.9 25

frog -1.7 2.0 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy




Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What is min/max of loss
value?

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

[0,inf]

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy




Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: At initialization W is
small so all s = 0.

What is the loss? cat 3.2 1.3 2.2
car 5.1 4.9 2.5

C-1
frog -1.7 2.0 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia [&]

) SVM Loss Example Tech |



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if the sum was
over all classes?

(including j =y i) cat 3.2 1.3 2.2

No difference car 5.1 4.9 2.5
(add constant 1) frog 17 20 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example iy



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if we used mean
instead of sum?

cat 3.2 1.3 2.2

No difference car 5.1 4.9 2.5
Scaling by constant frog 17 20 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia [&]

) SVM Loss Example Tech |



fle, W) =Wz

L= 3 31 X i, max(0, f(zi; W); — f(2s W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Q: Is this W unique?

No 2W also has L=0

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example SEE




If we use the softmax function to
convert scores to probabilities,
the right loss function to use is

L; = —log P(Y = y;|X = x;)
cross-entropy

Can be derived by looking at the

distance between two probability
distributions (output of model and
ground truth)

Maximize log-prob of correct class =
Maximize the log likelihood
= Minimize the negative log likelihood

Can also be derived from a
maximum likelihood estimation
perspective

) Performance Measure for Probabilities Gegrgia |




If we use the softmax function to convert scores to probabilities,
the right loss function to use is cross-entropy

Performance Measure for Probabilities Gegrgia |




Softmax Classifier (Multinomial Logistic Regression)
mm \WVant to interpret raw classifier scores as probabilities

Sk

e
s = flxg W) P(Y = kIX = x) = 55 | ponmax
]

Probabilities Probabilities
L; = —logP(Y = y;|X = x;
must be >= 0 must sum to 1 L— 0gPY = yilX = x)
- L; =—log(0.13
cat | 3.2 24.5 0.13 — =-1080.19

exp

car | 5.1 |—|164.0 == 0.87
frog -1.7 0.18 0.00

Unnormalized log- Unnormalized
probabilities / logits probabilities

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gegrata |




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sk

e
s = flxg W) P(Y = kIX = x) = 55 | ponmax
]

Probabilities Probabilities

L; = —logP(Y = y;|X = x;
must be >= 0 must sumto 1 L— 0gPY = yilX = x)

L; = —log(0.13)
Q: What is the min/max of
possible loss L_i?

Infimum is 0, max is unbounded (inf)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gegrata |




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sk

e
s=f(lx; W P(Y = kIX = x:) = Softmax
Jes ) ( | *i) Y;e% | Function
Probabilities Probabilities
L; = —logP(Y = y;|X = x;
must be >= 0 must sum to 1 L. 0gP( Vil Xi)

L; = —log(0.13)
Q: At initialization all s will be
approximately equal; what is
the loss?

Log(C), e.g. log(10) = 2

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gegrata |



hinge loss (SVM)
ortmax Vvs. 285
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—» | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -005 | 0.1 | 0.05 -15 0.0 =
0.28 1.58
0.7 0.2 0.05 0.16
22 e 0.2
0.0 -0.45 | -0.2 0.03 -44 -0.3 | cross-entropy loss (Softmax)
-2.85 0.058 0.016
w 56 b
ex normalize
> | 0.86 _“.). 236 | — 5| 0.631 | -109(0:353)
x’t (to sum =
to one) 0.452
0.28 1.:32 0.353
Y; | 2

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Cross-Entropy Loss Example Gegrata |




If we are performing regression, we can directly optimize to match the
ground truth value

4 N
Example: House price prediction 3 - scassicaon
pronlen’rlal .
2 - = b
—— Support Vector
Li=|y—-Wx;| L1 T
_ 2 o
L =y —Wx L2 2
For probabilities : 1 P ‘
Sk y
Li — |y — Wxil = Y Logistic Source: https://raw.githubusercontent.com/rohan-
Z ] e’ varma/rohan-blog/gh-pages/images/loss3.jpg
. J

) Regression Example Gegraia)



Often, we add a regularization term to the loss function

L1 Regularization

L=y —Wx;|* + |W]|

Example regularizations:

L1/L2 on weights (encourage small values)

) Regularization Gegraia)



Gradient

Descent




Input (and representation) Class Scores
Functional form of the model l
Including parameters Car Coffee Bird

. Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters ] %

Optimization algorithm

Class Scores

|j‘> Model E>
fx,W)=W,+b

Data: Image Features: Histogram Q Car Coffee Bird

Cup

) Components of a Parametric Model Gegutia)



Given a model and loss function, finding the
best set of weights is a search problem

Find the best combination of weights

that minimizes our loss function
Several classes of methods:

Random search

Genetic algorithms (population-based
search)

Gradient-based optimization

In deep learning, gradient-based methods
are dominant although not the only
approach possible

) Optimization

W11

W21

W21

W12
W22
W22

Loss

Wim bl-
Wom b2
W3m b3_

Georgia [ﬁ]

Tech



As weights change, the loss
changes as well

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
iterative algorithms that take
current values of weights and
modify them a bit

) Loss Surfaces

CE

Georgia

Tech

JL



Strategy: Follow the Slope! Gograla




We can find the steepest descent direction by
computing the derivative (gradient):

fla+h) - f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the
loss function changes as weights are varied

Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

) Derivatives

Ax

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

Georgia

Tech

JL




This idea can be turned into an algorithm (gradient descent)
Choose a model: f(x, W) = Wx

Choose loss function: L; = |y — Wx;|?

Calculate partial derivative for each parameter: oL

aWi
Update the parameters: w; = w; — aavl;_
Add learning rate to prevent too big of a step: w; = w; — aaavl;_

Repeat (from Step 3)
) Gradient Descent SEE




http://demonstrations.wolfram.com/VisualizingTheGradientVector/

w, A

— original W
>

negative gradient direction

Gradient Descent Geqe Al



Gradient Descent Georgia |
Tech@




Often, we only compute the gradients across a small subset of
data

1
Full Batch Gradient Descent L = NZ L (f(xi, W), yi)

1
Mini-Batch Gradient Descent L = MZ L(f(x;;W),y;)
Where M is a subset of data
We iterate over mini-batches:

Get mini-batch, compute loss, compute derivatives, and
take a set

) Mini-Batch Gradient Descent

Georgia

Tech

JL



Gradient descent is guaranteed to converge under some
conditions

For example, learning rate has to be appropriately reduced
throughout training

It will converge to a local minima
Small changes in weights would not decrease the loss

It turns out that some of the local minima that it finds in
practice (if trained well) are still pretty good!

) Gradient Descent Properties SEE




We know how to compute the
model output and loss

fiz) = 1y = 64x(1 —1)(1 - 2r)*(1 - Br + 82”)" Differentiation 2r)(1 — 8 + 822)2

function

dL

£1(x):
128x(1 - x)(-8+ 16 x) (1 -2

Several ways to compute rriined
a - —x){1-2x)"2({1 -8z +8
l % g 1°2)"2 - BAx(1-21)°2 (1 -8

Symbolic v x+B8x"2)"2 - 266x{1 - x) (1 -
Differentiation 2x)(1-8x+8x"2)72

£0)1 of the Closed-form e

Ma n ual d |ﬂ:e rent|at|0n 64x (1-1) (1-20)"2 (1-8x+Bx"2)"2

Symbolic differentiation \

£ (x):
v, v’} = (x,1) TrEx):
fori=1to03 h = 0.000001

Numerical differentiation i LT

or, in closed-form,

o=

Automatic differentiation

Computing Gradients Gegrata |




current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

S

D D ) D N N D )

-
.
.
el

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25322

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

o

(1.25322 - 1.25347)/0.0001
=-2.5

af(e) _,  fo+h) - f()
dzr h =0 h
?,
?2,...]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

N
o

D D ) D N N D )

-
.
.
el

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . fz+h)— f(z)
-1.5, -1.5, =
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

o

(1.25347 - 1.25347)/0.0001

=0

df(z) _

dx h—0

. f(z+h) - f(z)
lim B

7 ]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Numerical vs Analytic Gradients

df() _ . f@+h) - f()
dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(
In practice: Derive analytic gradient, check your

implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For some functions, we can analytically derive the partial derivative
Example: Derivation of Update Rule

Function Loss
T 2
fwx)=wlx,  i—wx)
(Assume w and x; are column vectors, so same as W - X;)

Update Rule

N
w; < w; + 21 Z O Xy;
k=1

\ V.

) Manual Differentiation Gegrgia |




For some functions, we can analytically derive the partial derivative

Example: Derivation of Update Rule
d
Function Loss L= B wix0®  Gw = Z ,w, O™ W R
N
f(W, xi) = WTxi (yi — wai)z Gradient descent tells us Z Z(Yk —w xk)_(yk —wlx)

we should update w as

(Assume w and x; are column vectors, so same as W - X;) follows to minimize L:

=-2 Z Sk—W Xk
JL
. o — ...where...
e ow; 8k = yi— W' X
Update Rule N
N So what’s %? =2 ; 5ka—W]_Z WXy
J = i=
W] «— W] -+ 27] Z 6kxkj N
_ = —ZZ 6kxk]
k=1

) Manual Differentiation Ge%%ﬁ&



If we add a non-linearity (sigmoid), derivation is more complex

1

First, one can derive that: '@ = a(x)(1 — a(x))

fx) =0 (Zk: wkxk> 2
L:Z<yi_a<zwkxik)> . -4 2 o 2 4
i k

oL 5 The sigmoid perception update rule:
_:ZZ yi—0'<Zkaik) _a_l/l’ja(Zkaik)

j «— W] + 27] z 6i0'i(1 - O'i)xi]-

w
’ 0 k=1
ZZ—Z yi—o Zwkxik o Zwkxik a—z WiXik - m
. Wj
i K K K
=0 z ijij
=1

where 0;
_ z ~28,0(d;)(1 - a(dy))x;;

o)

i

where §; = y; — f(x;) d; = Zkaik 6; =y;i—0;

) Adding a Non-Linear Function Gogrola)




Given a library of simple functions

—> —log

complicate function 1

Compose into a

u 1

1+e™u

—1 —log(p)

) Decomposing a Function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Georgia

Tech

411




Linear
Algebra
View:

Vector and
Matrix Sizes




Wi1 Wiz 0 Wi b1 X
Wa1 Wzz -+ Wz b2] .
W31 W3z = Wam D3] |,
N
w X

Sizes: [cx(d+1)] [(d+1)x1]

Where ¢ is number of classes

d is dimensionality of input

) Closer Look at a Linear Classifier Gegutin)




Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R!, vector v € R™, i.e. v = [v, V3, ..., U]

and matrix M € Rkx? .-
V1

s
What is the size of% ? R™*1 (column vector of size m) |av,
as

What is the size of% ? R™ (row vector of size m) v,

. ds |

ds O0s ds
dv, 0vy OV,

) Dimensionality of Derivatives Gegrata |



Conventions:

1
What is the size of 2% ? A matrix: Col ;
v B 1 7
0v;
2
0v]
' 1
Row ;i ov;
v}

This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia)

) Dimensionality of Derivatives Gegrata |



Conventions:

What is the size of ;—; ? A matrix:

ds
am[m]

ds
omy;

Dimensionality of Derivatives Gegrata |




. . oL
9% 9
What is the size of il

Remember that loss is a scalar and W is a matrix:

Wi Wiz - Wy b1
Wy1 Wiz - Wy b2
W31 W3z 0 Wz, b3
Jacobian is also a matrix: W
- dL JL JL i)
0w11 awlz awlm 6b1
oL JL JL
o T dwe 9b,
oL JL
dws. 0bs

Dimensionality of Derivatives Gegrata |




Batches of data are matrices or tensors (multi- X117 X12 X1n
dimensional matrices) X917 X2 v Xap
Examples: : : K :
Each instance is a vector of size m, our batch is of Xn1 Xn2 " Xand
size [B X m|]
Each instance is a matrix (e.g. grayscale image) of Flatten @

size W x H, our batch is [B X W X H]

X11

Each instance is a multi-channel matrix (e.g. color X12
image with R,B,G channels) of size C x W x H, our .
batch is [B X C x W x H| x.

21

Jacobians become tensors which is complicated X2o
Instead, flatten input to a vector and get a vector of :

derivatives! X1
This can also be done for partial derivatives :

between two vectors, two matrices, or two tensors | Xnn

) Jacobians of Batches Gegrgia |




