
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Linear Classification, Loss functions 
• Gradient Descent



Administrivia

• Assignment 1 out today!
• Start early, start early, start early!

• Piazza: Enroll now! https://piazza.com/class/kjsselshfiz18c (Code: DL2021)

• NOTE: There is an OMSCS section with a DIFFERENT piazza. Make sure you 
are in the right one

• Office hours start this week



Parametric Model

Explicitly model the function in 
the form of a parametrized function 

, examples:

⬣ Logistic regression/classification

⬣ Neural networks

Capacity (size of hypothesis class) does 
not grow with size of training data!

Learning is search

Supervised Learning

Parametric – Linear Classifier

Procedure: 

Calculate score per class for 
example

Return label of maximum score 
(argmax)



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee 
Cup

Bird

Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



⬣ Input: Continuous number or vector

⬣ Output: A continuous number

⬣ For classification typically a score

⬣ For regression what we want to regress to (house prices, 
crime rate, etc.)

⬣ is a vector and weights to optimize to fit target function

Model: Discriminative Parameterized Function

Classifier Input
(vector)

Weights
Output

(scalar or vector)



Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Simple Function

Classifier
Result

Input

Weights Bias 
(scalar)

What is the simplest function 
you can think of?

Our model is:

𝑦

𝑥

Image adapted from: 
https://en.wikipedia.org/wiki/Linear_equation#/
media/File:Linear_Function_Graph.svg

(Note if 𝒘 and 𝐱 are column vectors we often show this as 𝒘்𝒙)



Simple linear classifier: 

⬣ Calculate score: 

⬣ Binary classification rule 
( is a vector):

⬣ For multi-class classifier take  
class with highest (max) score

Linear Classification and 
Regression



Linear Classification and Regression

⬣ Idea: Separate classes via 
high-dimensional linear 
separators (hyper-planes)

⬣ One of the simplest 
parametric models, but 
surprisingly effective

⬣ Very commonly used!

⬣ Let’s look more closely at 
each element

Car

Bird



Input Dimensionality

To simplify notation we will refer to inputs as ଵ  where 

Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model

ଵଵ ଵଶ ଵ

ଶଵ ଶଶ ଶ

ଵ ଶ 

ଵଵ

ଵଶ

ଶଵ

ଶଶ

ଵ



Flatten



Weights

Model

ଵଵ ଵଶ ଵ

ଶଵ ଶଶ ଶ

ଷଵ ଷଶ ଷ

ଵ

ଶ



Classifier for class 1
Classifier for class 2
Classifier for class 3

ଵ

ଶ

ଷ

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)



Weights

Model

ଵଵ ଵଶ ଵ ଵ

ଶଵ ଶଶ ଶ ଶ

ଷଵ ଷଶ ଷ ଷ

ଵ

ଶ



⬣ We can move 
the bias term 
into the weight 
matrix, and a “1” 
at the end of the 
input

⬣ Results in one 
matrix-vector 
multiplication! 



56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score



Interpreting a Linear Classifier 

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Visual Viewpoint

We can convert the 
weight vector back into 
the shape of the image 
and visualize

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

plane car bird cat deer dog frog horse ship truck



Interpreting a Linear Classifier 

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Geometric Viewpoint

Plot created using Wolfram Cloud

Array of 32x32x3 numbers
(3072 numbers total)



Hard Cases for a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Class 1: 
number of pixels > 0 odd

Class 2: 
number of pixels > 0 even

Class 1: 
1 < = L2 norm < = 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else



Linear Classifier: Three Viewpoints

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Algebraic 
Viewpoint

Visual 
Viewpoint

One template 
per class

Geometric 
Viewpoint

Hyperplanes 
cutting up space



Performance 
Measure for 
a Classifier



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



Classification using Scores

⬣ The output of a classifier can 
be considered a score

⬣ For binary classifier, use rule:

⬣ Can be used for many 
classes by considering 
one class versus all the 
rest (one versus all)

⬣ For multi-class classifier can 
take the maximum

Car

Class Scores

Coffee 
Cup

Bird

Model
𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏



Converting Scores to Probabilities

Several issues with scores:

⬣ Not very interpretable (no 
bounded value)

We often want probabilities

⬣ More interpretable

⬣ Can relate to probabilistic 
view of machine learning

We use the softmax function to 
convert scores to probabilities

Scores

Softmax
Function

𝒔𝒌

𝒔𝒋 
𝒋



Performance Measure

We need a performance measure to 
optimize

⬣ Penalizes model for being wrong

⬣ Allows us to modify the model to 
reduce this penalty

⬣ Known as an objective or loss
function

In machine learning we use empirical 
risk minimization

⬣ Reduce the loss over the training 
dataset

⬣ We average the loss over the training 
data

Given a dataset of examples:

Where 𝒊 is image and 

𝒊 is (integer) label

Loss over the dataset is a sum 
of loss over examples:



Performance Measure for Scores

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝒊
𝒋

 

𝒋ஷ𝒚𝒊

𝒋 𝒚𝒊

 

𝒋ஷ𝒚𝒊

𝒚𝒊

𝒚𝒊 𝒋

scores for other classes

delta

score
score for correct class

𝒚𝒊

𝒋

Example: “Hinge Loss”



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Losses: 2.9

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

= max(0, 5.1 - 3.2 + 1) 
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Losses: 0.0

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3 
= 5.27



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Q: What happens to loss if 
car image scores change a 
bit?

No change for small values



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Q: What is min/max of loss 
value?

[0,inf]



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Q: At initialization W is 
small so all s ≈ 0.
What is the loss?

C-1



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Q: What if the sum was 
over all classes? 
(including j = y_i)

No difference 
(add constant 1)



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores ( , )= are:

Multiclass SVM loss:

𝑳𝒊 =  𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

 

𝒋ஷ𝒚𝒊

Q: What if we used mean 
instead of sum?

No difference
Scaling by constant



SVM Loss Example

E.g. Suppose that we found a W such that L = 0. 
Q: Is this W unique?

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

No 2W also has L=0



Performance Measure for Probabilities

⬣ If we use the softmax function to 
convert scores to probabilities, 
the right loss function to use is 
cross-entropy

⬣ Can be derived by looking at the 
distance between two probability 
distributions (output of model and 
ground truth)

⬣ Can also be derived from a 
maximum likelihood estimation 
perspective

Maximize log-prob of correct class =
Maximize the log likelihood 

= Minimize the negative log likelihood

𝒊 𝒊 𝒊



Performance Measure for Probabilities

⬣ If we use the softmax function to convert scores to probabilities, 
the right loss function to use is cross-entropy



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities 
must be >= 0

Probabilities 
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋 
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

3.2 24.5 0.13cat

frog

car 5.1
-1.7

164.0
0.18

0.87
0.00

exp normalize

Unnormalized 
probabilities

ProbabilitiesUnnormalized log-
probabilities / logits

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities 
must be >= 0

Probabilities 
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋 
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: What is the min/max of 
possible loss L_i?

Infimum is 0, max is unbounded (inf)



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities 
must be >= 0

Probabilities 
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋 
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: At initialization all s will be 
approximately equal; what is 
the loss?

Log(C), e.g. log(10) ≈ 2



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax vs. SVM



Regression Example

If we are performing regression, we can directly optimize to match the 
ground truth value

⬣ Example: House price prediction

⬣ For probabilities

Source: https://raw.githubusercontent.com/rohan-
varma/rohan-blog/gh-pages/images/loss3.jpg

L1𝒊 𝒊

L2𝒊 𝒊
𝟐

Logistic𝒊 𝒊

𝒔𝒌

𝒔𝒋 
𝒋



Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization



Gradient 
Descent



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



Optimization

Given a model and loss function, finding the 
best set of weights is a search problem

⬣ Find the best combination of weights 
that minimizes our loss function

Several classes of methods:

⬣ Random search

⬣ Genetic algorithms (population-based 
search)

⬣ Gradient-based optimization

In deep learning, gradient-based methods 
are dominant although not the only 
approach possible

Loss

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟐𝟏 𝟐𝟐 𝟑𝒎



Loss Surfaces

As weights change, the loss 
changes as well

⬣ This is often somewhat-
smooth locally, so small 
changes in weights produce 
small changes in the loss

We can therefore think about 
iterative algorithms that take 
current values of weights and 
modify them a bit



Strategy: Follow the Slope!



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative (gradient):

⬣ Steepest descent direction is the negative 
gradient

⬣ Intuitively: Measures how the function 
changes as the argument a changes by a small 
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 
loss function changes as weights are varied

⬣ Can consider each parameter separately 
by taking partial derivative of loss 
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif



Gradient Descent

This idea can be turned into an algorithm (gradient descent)

⬣ Choose a model: 

⬣ Choose loss function: 𝒊 𝒊
𝟐

⬣ Calculate partial derivative for each parameter: 
𝝏𝑳

𝝏𝒘𝒊

⬣ Update the parameters: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Add learning rate to prevent too big of a step: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Repeat (from Step 3)



Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/



Gradient Descent
w1



Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of 
data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and 
take a set



Gradient Descent Properties

Gradient descent is guaranteed to converge under some 
conditions

⬣ For example, learning rate has to be appropriately reduced 
throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in 
practice (if trained well) are still pretty good! 



Computing Gradients

We know how to compute the 
model output and loss 
function

Several ways to compute 
𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example: 

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)



Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example: 

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

Gradient descent tells us 
we should update 𝒘 as 
follows to minimize 𝐿:

So what’s 
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐𝑵
𝒌ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜼
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= 

𝝏

𝝏𝒘𝒋
(𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐

𝑵

𝒌ୀ𝟏

=  𝟐 𝒚𝒌 − 𝒘𝑻𝒙𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒌 − 𝒘𝑻𝒙𝒌)

= −𝟐  𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

𝒘𝑻𝒙𝒌

= −𝟐  𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

 𝒘𝒊𝒙𝒌𝒊

𝒎

𝒊ୀ𝟏

= −𝟐  𝜹𝒌𝒙𝒌𝒋

𝑵

𝒌ୀ𝟏

𝜹𝒌 = 𝒚𝒌 − 𝒘𝑻𝒙𝒌

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)



𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙 )First, one can derive that: 

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈  𝒘𝒌𝒙𝒌

 

𝒌

L =  𝒚𝒊 − 𝝈  𝒘𝒌𝒙𝒊𝒌

 

𝒌

𝟐
 

𝒊

𝝏𝑳

𝝏𝒘𝒋
=  𝟐 𝒚𝒊 − 𝝈  𝒘𝒌𝒙𝒊𝒌

 

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈  𝒘𝒌𝒙𝒊𝒌

 

𝒌

 

𝒊

=  −𝟐 𝒚𝒊 − 𝝈  𝒘𝒌𝒙𝒊𝒌

 

𝒌

𝝈′  𝒘𝒌𝒙𝒊𝒌

 

𝒌

 

𝒊

𝝏

𝝏𝒘𝒋
 𝒘𝒌𝒙𝒊𝒌

 

𝒌

=  −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊 )𝒙𝒊𝒋

 

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 =  𝒘𝒌𝒙𝒊𝒌

 

 

where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜼  𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈  𝒘𝒋𝒙𝒊𝒋

𝒎

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where



Decomposing a Function 

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝐬𝐢𝐧(𝒙)

𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑



Linear 
Algebra 

View: 
Vector and 

Matrix Sizes



Closer Look at a Linear Classifier

Sizes: 

Where is number of classes

is dimensionality of input

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏

𝟐

𝒎



Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices: 
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×κ

⬣ What is the size of 
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size )

⬣ What is the size of 
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size )

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎



Conventions:

⬣ What is the size of 
𝝏𝒗𝟏

𝝏𝒗𝟐 ? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row 

Col 

𝟏
𝟏

𝟏
𝟐

𝒊
𝟏

𝒋
𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia)



Dimensionality of Derivatives

Conventions:

⬣ What is the size of 
𝝏𝒔

𝝏𝑴
? 

[𝟏,𝟏]

[𝒊,𝒋]

A matrix:



Dimensionality of Derivatives

⬣ What is the size of 
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size m, our batch is of 
size [𝑩 × 𝒎]

⬣ Each instance is a matrix (e.g. grayscale image) of 
size 𝑾 × 𝑯, our batch is [𝑩 × 𝑾 × 𝑯]

⬣ Each instance is a multi-channel matrix (e.g. color 
image with R,B,G channels) of size 𝑪 × 𝑾 × 𝑯, our 
batch is [𝑩 × 𝑪 × 𝑾 × 𝑯]

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of 
derivatives!

⬣ This can also be done for partial derivatives 
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏


