
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Linear Classification, Loss functions
• Gradient Descent

Administrivia

• Assignment 1 out today!
• Start early, start early, start early!

• Piazza: Enroll now! https://piazza.com/class/kjsselshfiz18c (Code: DL2021)

• NOTE: There is an OMSCS section with a DIFFERENT piazza. Make sure you
are in the right one

• Office hours start this week

Parametric Model

Explicitly model the function in
the form of a parametrized function

, examples:

⬣ Logistic regression/classification

⬣ Neural networks

Capacity (size of hypothesis class) does
not grow with size of training data!

Learning is search

Supervised Learning

Parametric – Linear Classifier

Procedure:

Calculate score per class for
example

Return label of maximum score
(argmax)

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee
Cup

Bird

Car

Class Scores

Coffee
Cup

Bird

Loss Function

Optimizer

⬣ Input: Continuous number or vector

⬣ Output: A continuous number

⬣ For classification typically a score

⬣ For regression what we want to regress to (house prices,
crime rate, etc.)

⬣ is a vector and weights to optimize to fit target function

Model: Discriminative Parameterized Function

Classifier Input
(vector)

Weights
Output

(scalar or vector)

Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear
classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Simple Function

Classifier
Result

Input

Weights Bias
(scalar)

What is the simplest function
you can think of?

Our model is:

𝑦

𝑥

Image adapted from:
https://en.wikipedia.org/wiki/Linear_equation#/
media/File:Linear_Function_Graph.svg

(Note if 𝒘 and 𝐱 are column vectors we often show this as 𝒘்𝒙)

Simple linear classifier:

⬣ Calculate score:

⬣ Binary classification rule
(is a vector):

⬣ For multi-class classifier take
class with highest (max) score

Linear Classification and
Regression

Linear Classification and Regression

⬣ Idea: Separate classes via
high-dimensional linear
separators (hyper-planes)

⬣ One of the simplest
parametric models, but
surprisingly effective

⬣ Very commonly used!

⬣ Let’s look more closely at
each element

Car

Bird

Input Dimensionality

To simplify notation we will refer to inputs as ଵ where

Data: Image

Car

Class Scores

Coffee
Cup

Bird

Model

ଵଵ ଵଶ ଵ

ଶଵ ଶଶ ଶ

ଵ ଶ

ଵଵ

ଵଶ

ଶଵ

ଶଶ

ଵ

Flatten

Weights

Model

ଵଵ ଵଶ ଵ

ଶଵ ଶଶ ଶ

ଷଵ ଷଶ ଷ

ଵ

ଶ

Classifier for class 1
Classifier for class 2
Classifier for class 3

ଵ

ଶ

ଷ

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

Weights

Model

ଵଵ ଵଶ ଵ ଵ

ଶଵ ଶଶ ଶ ଶ

ଷଵ ଷଶ ଷ ଷ

ଵ

ଶ

⬣ We can move
the bias term
into the weight
matrix, and a “1”
at the end of the
input

⬣ Results in one
matrix-vector
multiplication!

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

Interpreting a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Visual Viewpoint

We can convert the
weight vector back into
the shape of the image
and visualize

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

plane car bird cat deer dog frog horse ship truck

Interpreting a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Geometric Viewpoint

Plot created using Wolfram Cloud

Array of 32x32x3 numbers
(3072 numbers total)

Hard Cases for a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Class 1:
number of pixels > 0 odd

Class 2:
number of pixels > 0 even

Class 1:
1 < = L2 norm < = 2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

Linear Classifier: Three Viewpoints

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Algebraic
Viewpoint

Visual
Viewpoint

One template
per class

Geometric
Viewpoint

Hyperplanes
cutting up space

Performance
Measure for
a Classifier

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee
Cup

Bird

Loss Function

Optimizer

Classification using Scores

⬣ The output of a classifier can
be considered a score

⬣ For binary classifier, use rule:

⬣ Can be used for many
classes by considering
one class versus all the
rest (one versus all)

⬣ For multi-class classifier can
take the maximum

Car

Class Scores

Coffee
Cup

Bird

Model
𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

Converting Scores to Probabilities

Several issues with scores:

⬣ Not very interpretable (no
bounded value)

We often want probabilities

⬣ More interpretable

⬣ Can relate to probabilistic
view of machine learning

We use the softmax function to
convert scores to probabilities

Scores

Softmax
Function

𝒔𝒌

𝒔𝒋
𝒋

Performance Measure

We need a performance measure to
optimize

⬣ Penalizes model for being wrong

⬣ Allows us to modify the model to
reduce this penalty

⬣ Known as an objective or loss
function

In machine learning we use empirical
risk minimization

⬣ Reduce the loss over the training
dataset

⬣ We average the loss over the training
data

Given a dataset of examples:

Where 𝒊 is image and

𝒊 is (integer) label

Loss over the dataset is a sum
of loss over examples:

Performance Measure for Scores

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝒊
𝒋

𝒋ஷ𝒚𝒊

𝒋 𝒚𝒊

𝒋ஷ𝒚𝒊

𝒚𝒊

𝒚𝒊 𝒋

scores for other classes

delta

score
score for correct class

𝒚𝒊

𝒋

Example: “Hinge Loss”

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Losses: 2.9

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Losses: 0.0

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the
scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3
= 5.27

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Q: What happens to loss if
car image scores change a
bit?

No change for small values

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Q: What is min/max of loss
value?

[0,inf]

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Q: At initialization W is
small so all s ≈ 0.
What is the loss?

C-1

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Q: What if the sum was
over all classes?
(including j = y_i)

No difference
(add constant 1)

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2
5.1

-1.7
4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some the scores (,)= are:

Multiclass SVM loss:

𝑳𝒊 = 𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

𝒋ஷ𝒚𝒊

Q: What if we used mean
instead of sum?

No difference
Scaling by constant

SVM Loss Example

E.g. Suppose that we found a W such that L = 0.
Q: Is this W unique?

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

No 2W also has L=0

Performance Measure for Probabilities

⬣ If we use the softmax function to
convert scores to probabilities,
the right loss function to use is
cross-entropy

⬣ Can be derived by looking at the
distance between two probability
distributions (output of model and
ground truth)

⬣ Can also be derived from a
maximum likelihood estimation
perspective

Maximize log-prob of correct class =
Maximize the log likelihood

= Minimize the negative log likelihood

𝒊 𝒊 𝒊

Performance Measure for Probabilities

⬣ If we use the softmax function to convert scores to probabilities,
the right loss function to use is cross-entropy

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities
must be >= 0

Probabilities
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

3.2 24.5 0.13cat

frog

car 5.1
-1.7

164.0
0.18

0.87
0.00

exp normalize

Unnormalized
probabilities

ProbabilitiesUnnormalized log-
probabilities / logits

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities
must be >= 0

Probabilities
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: What is the min/max of
possible loss L_i?

Infimum is 0, max is unbounded (inf)

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities
must be >= 0

Probabilities
must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

∑ 𝒆𝒔𝒋
𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: At initialization all s will be
approximately equal; what is
the loss?

Log(C), e.g. log(10) ≈ 2

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax vs. SVM

Regression Example

If we are performing regression, we can directly optimize to match the
ground truth value

⬣ Example: House price prediction

⬣ For probabilities

Source: https://raw.githubusercontent.com/rohan-
varma/rohan-blog/gh-pages/images/loss3.jpg

L1𝒊 𝒊

L2𝒊 𝒊
𝟐

Logistic𝒊 𝒊

𝒔𝒌

𝒔𝒋
𝒋

Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization

Gradient
Descent

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee
Cup

Bird

Loss Function

Optimizer

Optimization

Given a model and loss function, finding the
best set of weights is a search problem

⬣ Find the best combination of weights
that minimizes our loss function

Several classes of methods:

⬣ Random search

⬣ Genetic algorithms (population-based
search)

⬣ Gradient-based optimization

In deep learning, gradient-based methods
are dominant although not the only
approach possible

Loss

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟐𝟏 𝟐𝟐 𝟑𝒎

Loss Surfaces

As weights change, the loss
changes as well

⬣ This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
iterative algorithms that take
current values of weights and
modify them a bit

Strategy: Follow the Slope!

Derivatives

⬣ We can find the steepest descent direction by
computing the derivative (gradient):

⬣ Steepest descent direction is the negative
gradient

⬣ Intuitively: Measures how the function
changes as the argument a changes by a small
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the
loss function changes as weights are varied

⬣ Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Gradient Descent

This idea can be turned into an algorithm (gradient descent)

⬣ Choose a model:

⬣ Choose loss function: 𝒊 𝒊
𝟐

⬣ Calculate partial derivative for each parameter:
𝝏𝑳

𝝏𝒘𝒊

⬣ Update the parameters: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Add learning rate to prevent too big of a step: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Repeat (from Step 3)

Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent
w1

Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of
data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and
take a set

Gradient Descent Properties

Gradient descent is guaranteed to converge under some
conditions

⬣ For example, learning rate has to be appropriately reduced
throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in
practice (if trained well) are still pretty good!

Computing Gradients

We know how to compute the
model output and loss
function

Several ways to compute
𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

Gradient descent tells us
we should update 𝒘 as
follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐𝑵
𝒌ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜼
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
=

𝝏

𝝏𝒘𝒋
(𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐

𝑵

𝒌ୀ𝟏

= 𝟐 𝒚𝒌 − 𝒘𝑻𝒙𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒌 − 𝒘𝑻𝒙𝒌)

= −𝟐 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

𝒘𝑻𝒙𝒌

= −𝟐 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

 𝒘𝒊𝒙𝒌𝒊

𝒎

𝒊ୀ𝟏

= −𝟐 𝜹𝒌𝒙𝒌𝒋

𝑵

𝒌ୀ𝟏

𝜹𝒌 = 𝒚𝒌 − 𝒘𝑻𝒙𝒌

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 𝒘𝒌𝒙𝒌

𝒌

L = 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝟐

𝒊

𝝏𝑳

𝝏𝒘𝒋
= 𝟐 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝒊

= −𝟐 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝝈′ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝒊

𝝏

𝝏𝒘𝒋
 𝒘𝒌𝒙𝒊𝒌

𝒌

= −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = 𝒘𝒌𝒙𝒊𝒌

where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜼 𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈 𝒘𝒋𝒙𝒊𝒋

𝒎

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

Decomposing a Function

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝐬𝐢𝐧(𝒙)

𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑

Linear
Algebra

View:
Vector and

Matrix Sizes

Closer Look at a Linear Classifier

Sizes:

Where is number of classes

is dimensionality of input

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏

𝟐

𝒎

Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×κ

⬣ What is the size of
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size)

⬣ What is the size of
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size)

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎

Conventions:

⬣ What is the size of
𝝏𝒗𝟏

𝝏𝒗𝟐 ?

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row

Col

𝟏
𝟏

𝟏
𝟐

𝒊
𝟏

𝒋
𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia)

Dimensionality of Derivatives

Conventions:

⬣ What is the size of
𝝏𝒔

𝝏𝑴
?

[𝟏,𝟏]

[𝒊,𝒋]

A matrix:

Dimensionality of Derivatives

⬣ What is the size of
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:

Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size m, our batch is of
size [𝑩 × 𝒎]

⬣ Each instance is a matrix (e.g. grayscale image) of
size 𝑾 × 𝑯, our batch is [𝑩 × 𝑾 × 𝑯]

⬣ Each instance is a multi-channel matrix (e.g. color
image with R,B,G channels) of size 𝑪 × 𝑾 × 𝑯, our
batch is [𝑩 × 𝑪 × 𝑾 × 𝑯]

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of
derivatives!

⬣ This can also be done for partial derivatives
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏

