Topics:

- Linear Classification, Loss functions
- Gradient Descent

CS 4803-DL / 7643-A ZSOLT KIRA

• Assignment 1 out today!

- Start early, start early, start early!
- Piazza: Enroll now! https://piazza.com/class/kjsselshfiz18c (Code: DL2021)
	- NOTE: There is an OMSCS section with a DIFFERENT piazza. Make sure you are in the right one
- Office hours start this week

Parametric Model

Explicitly model the function $f: X \to Y$ in the form of a parametrized function $f(x, W) = y$, examples:

- ⬣ Logistic regression/classification
- Neural networks

Capacity (size of hypothesis class) **does** not grow with size of training data!

Learning is search

Supervised Learning

Parametric – Linear Classifier
 $f(x|M) = M(x + h)$

$$
f(x,W) = Wx + b
$$

Procedure:

Calculate score per class for example Return label of maximum score (argmax)

Components of a Parametric Model

Georgia

- **Input: Continuous number or vector**
- Output: A continuous number
	- For classification typically a score
	- For regression what we want to regress to (house prices, crime rate, etc.)
	- w is a vector and weights to optimize to fit target function

Model: Discriminative Parameterized Function

What is the simplest function you can think of?

(Note if w and x are column vectors we often show this as $w^T x$)

Image adapted from: https://en.wikipedia.org/wiki/Linear_equation#/ media/File:Linear_Function_Graph.svg

Linear Classification and Regression

Simple linear classifier:

- Calculate score: $f(x, w) = w \cdot x + b$
- ⬣ Binary classification rule $(w$ is a vector):

 $y = \begin{cases} 1 & \text{if } f(x, w) > 0 \\ 0 & \text{otherwise} \end{cases}$

⬣ For multi-class classifier take class with highest (max) score $f(x, W) = Wx + b$

- Idea: Separate classes via high-dimensional linear separators (hyper-planes)
- ⬣ One of the simplest parametric models, but surprisingly effective
	- Very commonly used!
- Let's look more closely at each element

Linear Classification and Regression

To simplify notation we will refer to inputs as $x_1 \cdots x_m$ where $m = n \times n$

Input Dimensionality

Georgia

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

- We can move

the bias term

into the weight

matrix, and a "1"

at the end of the

input

Results in one
 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix$ into the weight matrix, and a "1" at the end of the input
- Results in one matrix-vector multiplication!

Model the bias term $f(x, W) = Wx + b$

$$
\begin{bmatrix}\nw_{11} & w_{12} & \cdots & w_{1m} & b_1 \\
w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\
w_{31} & w_{32} & \cdots & w_{3m} & b_3\n\end{bmatrix}\n\begin{bmatrix}\nx_1 \\
x_2 \\
\vdots \\
x_m \\
1\n\end{bmatrix}
$$
\n
$$
W
$$

Weights

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Example

Georgia

Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Interpreting a Linear Classifier

Plot created using Wolfram Cloud

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Interpreting a Linear Classifier

Class 1: Three modes Class 2: Everything else

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Hard Cases for a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Linear Classifier: Three Viewpoints

Performance Measure for a Classifier

Components of a Parametric Model

Georgia

- The output of a classifier can be considered a score
- For binary classifier, use rule:

if $f(x, w) > 0$
otherwise $\frac{1}{0}$ $y = \left\{$

- classes by considering one class versus all the rest (one versus all)
- ⬣ For multi-class classifier can take the maximum

Several issues with scores:

- ⬣ Not very interpretable (no bounded value)
- We often want probabilities
- More interpretable
- Can relate to probabilistic view of machine learning

We use the **softmax** function to convert scores to probabilities

 $s = f(x, W)$ Scores

$$
P(Y = k | X = x) = \frac{e^{s_j}}{\sum_j e^{s_j}}
$$

Softmax $\overline{s_j}$ Function s_k Coftmon

Converting Scores to Probabilities

We need a performance measure to optimize

- Penalizes model for being wrong $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^N$
- ⬣ Allows us to modify the model to reduce this penalty
- Known as an objective or loss function

In machine learning we use **empirical** risk minimization

- dataset
- We **average** the loss over the training data

Given a dataset of examples:

Where x_i is image and $_i$ is (integer) label

Loss over the dataset is a sum of loss over examples:

Reduce the loss over the **training**
dataset
 $L = \frac{1}{N} \sum_{i} L_1(f(x_i, W), y_i)$

Given an example (x_i, y_i) where x_i is the image and score where $\boldsymbol{y_{i}}$ is the (integer) label,

and using the shorthand for the

the SVM loss has the form:

$$
L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}
$$

=
$$
\sum_{j \neq y_{i}} max(0, s_{j} - s_{y_{i}} + 1)
$$

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Performance Measure for Scores **Secore Second** George

Given an example (x_i, y_i) where $x_{\boldsymbol{i}}$ is the image and where $\boldsymbol{y_{i}}$ is the (integer) label,

and using the shorthand for the

 $= max(0, 2.9) + max(0, -3.9)$

 $= 2.9 + 0$

 $= 2.9$

 $max(0, s_j - s_{y_i} + 1)$

the SVM loss has the form:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Losses: 2.9

Given an example (x_i, y_i) where $x_{\boldsymbol{i}}$ is the image and where $\boldsymbol{y_{i}}$ is the (integer) label,

and using the shorthand for the

 $max(0, s_j - s_{y_i} + 1)$

 $= max(0, -2.6) + max(0, -1.9)$

the SVM loss has the form:

 $= 0 + 0$

 $= 0$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Given an example (x_i, y_i) where $x_{\boldsymbol{i}}$ is the image and where $\boldsymbol{y_{i}}$ is the (integer) label,

and using the shorthand for the

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)
$$

Q: What happens to loss if car image scores change a bit?

No change for small values

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=Wx$ are:

cat 3.2 frog -1.7 car 5.1 3.2 4.9 4.9 2.5 1.3 2.2 2.0 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)
$$

Q: What is min/max of loss value?

 $[0, \inf]$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)
$$

Q: At initialization W is small so all $s \approx 0$. What is the loss?

C-1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
L_i = \sum\nolimits_{j \neq y_i} max(0, s_j - s_{y_i} + 1)
$$

Q: What if the sum was over all classes? $(including j = y_i)$

No difference (add constant 1) Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
L_i = \sum\nolimits_{j \neq y_i} max(0, s_j - s_{y_i} + 1)
$$

Q: What if we used mean instead of sum?

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

$$
\begin{aligned} &f(x,W)=Wx \\ &L=\tfrac{1}{N}\sum_{i=1}^N\sum_{j\neq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1) \end{aligned}
$$

E.g. Suppose that we found a W such that $L = 0$. Q: Is this W unique?

No 2W also has L=0

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

- If we use the softmax function to

convert scores to probabilities,

the right loss function to use is
 $L_i = -\log P(Y = y_i)$ convert scores to probabilities, the right loss function to use is cross-entropy
- ⬣ Can be derived by looking at the distance between two probability distributions (output of model and ground truth)
- Can also be derived from a maximum likelihood estimation perspective

$$
L_i = -\log P(Y = y_i | X = x_i)
$$

 $-\text{log }P(Y=y_i|X=x_i)$
Maximize log-prob of correct class =
Maximize the log likelihood
Minimize the negative log likelihood Maximize the log likelihood = Minimize the negative log likelihood

Performance Measure for Probabilities

● If we use the softmax function to convert scores to probabilities, the right loss function to use is **cross-entropy** the right loss function to use is cross-entropy

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Cross-Entropy Loss Example

Georgia

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as **probabilities**
 $s = f(x_i; W)$

Want to interpret raw classifier scores as **probabilities**

Q: What is the min/max of possible loss L_i?

Infimum is 0, max is unbounded (inf)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Cross-Entropy Loss Example

Georg

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as **probabilities**
 $s = f(x_i; W)$

Want to interpret raw classifier scores as **probabilities**

Q: At initialization all s will be approximately equal; what is the loss?

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Probabilities

Geora

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Cross-Entropy Loss Example

If we are performing regression, we can directly optimize to match the ground truth value

Regression Example

Georgia

Often, we add a regularization term to the loss function

L1 Regularization

$$
L_i = |y - Wx_i|^2 + |W|
$$

Example regularizations:

● L1/L2 on weights (encourage small values)

Components of a Parametric Model

Georgia

Given a model and loss function, finding the best set of weights is a search problem

Find the best combination of weights that minimizes our loss function
 $\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array}$

Several classes of methods:

- Random search
- ⬣ Genetic algorithms (population-based search)
- ⬣ Gradient-based optimization

In deep learning, gradient-based methods are dominant although not the only approach possible

Optimization

As weights change, the loss changes as well

⬣ This is often somewhatsmooth locally, so small changes in weights produce small changes in the loss

We can therefore think about **iterative algorithms** that take $\begin{array}{|c|c|}\n\hline\n\end{array}$ $\begin{array}{|c|c|}\n\hline\n\end{array}$ $\begin{array}{|c|c|}\n\hline\n\end{array}$ $\begin{array}{|c|}\n\hline\n\end{array}$ $\begin{array}{|c|}\n\hline\n\end{array}$ $\begin{array}{|c|}\n\hline\n\end{array}$ $\begin{array}{|c|}\n\hline\n\end{array}$ $\begin{array}{|c|}\n\hline\n\end{array}$ $\begin{array}{$ current values of weights and modify them a bit

Loss Surfaces

We can find the steepest descent direction by computing the derivative (gradient):

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
	- ⬣ As step size goes to zero
- **In Machine Learning:** Want to know how the loss function changes as weights are varied
	- ⬣ Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

This idea can be turned into an algorithm (gradient descent)

- Choose a model: $f(x, W) = Wx$
- Choose loss function: $L_i = |y Wx_i|^2$ $\mathbf{2}$
- Calculate partial derivative for each parameter: $\frac{\partial L}{\partial x}$ ∂w_i
- Update the parameters: $w_i = w_i \frac{\partial L}{\partial w_i}$ ∂w_i
- Add learning rate to prevent too big of a step: $w_i = w_i \alpha \frac{\partial L}{\partial w_i}$ ∂w_i

⬣ Repeat (from Step 3)

Gradient Descent

 $W₁$

Often, we only compute the gradients across a small subset of data

● Full Batch Gradient Descent

$$
L = \frac{1}{N} \sum L(f(x_i, W), y_i)
$$

⬣ Mini-Batch Gradient Descent

$$
L = \frac{1}{M} \sum L(f(x_i, W), y_i)
$$

- Where M is a *subset* of data
- We iterate over mini-batches:
	- Get mini-batch, compute loss, compute derivatives, and take a set

Mini-Batch Gradient Descent

Gradient descent is guaranteed to converge under some conditions

- For example, learning rate has to be appropriately reduced throughout training
- It will converge to a *local* minima
	- Small changes in weights would not decrease the loss
- It turns out that some of the local minima that it finds in practice (if trained well) are still pretty good!

We know how to compute the model output and loss function

Several ways to compute $\frac{\partial L}{\partial w_i}$

- Manual differentiation \parallel $\frac{f(x)}{64x(1-x)(1-2x)^{n_2}(1-8x+8x^{n_2})^{n_2}}$
- Symbolic differentiation
- Numerical differentiation $\overline{\bigcup_{(v,v')}^{\text{for } 1-1 \text{ to } 3} (u,v') = (4v(1-v), 4v'-8vv')}$
- ⬣ Automatic differentiation

Computing Gradients

Numerical vs Analytic Gradients

$$
\frac{df(x)}{dx}=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient. This is called a gradient check. **adient:** slow :(, approximate :(, easy to write :)
ient: fast :), exact :), error-prone :(
rive analytic gradient, check your
n with numerical gradient.
a gradient check.
Slide Credit: Fei-Fei Li, Justin Johnson, Sere

For some functions, we can analytically derive the partial de
 Example: Derivation of Update Rule

Function Loss
 $f(w, x_i) = w^T x_i$ $(y_i - w^T x_i)^2$

(Assume w and x_i are column vectors, so same as $w \cdot x_i$)

Update Rule For some functions, we can analytically derive the partial derivative Derivation of Update Rule Example: Function Loss T_{Υ} 2 $2 \mid$ T_{γ} $(\gamma_i - w^T \gamma_i)^2$ $i \qquad (y_i - w \; x_i)$ i $\frac{1}{2}$ $i = w x_i$ (Assume w and x_i are column vectors, so same as $w \cdot x_i$) Update Rule N and \blacksquare $j \leftarrow W_j + 2I$ $\left| \right|$ $\left| 0_k x_{kj} \right|$ $k=1$ Manual Differentiation Georg

For some functions, we can analytically derive the partial derivative

Example: **Function** Loss $\begin{vmatrix} L = \sum_{k=1}^{N} (y_k - w^T x_k)^2 & \frac{\partial w_j}{\partial w_j} = \sum_{k=1}^{N} \frac{\partial w_j}{\partial w_j} (y_k - w^T x_k)^2 \end{vmatrix}$ Update Rule
 $\begin{cases} w_j \leftarrow w_j - \eta \frac{\partial L}{\partial w_j} \end{cases}$ $i = w x_i$ $T_{\mathcal{X}}$, $(\mathcal{Y}_{i} - \mathcal{W}^{T} \mathcal{X}_{i})^{2}$ Gra $i \qquad (y_i - w \; x_i)$ Gra T_{Υ} , 2 $\begin{bmatrix} 2 & 2 \end{bmatrix}$ Gradient descent tells us i) Gradient desce $2 \int_{0}^{\pi}$ Gradient descent tells us $= \sum_{n=1}^{\infty} 2^n$ $j \leftarrow W_j + 2I$ $\left| \right|$ $\left| 0_k x_{kj} \right|$ N So what's $\frac{\partial L}{\partial w}$? $= -2 \sum \delta_k \frac{d}{du}$ $k=1$ Derivation of Update Rule we should update w as $\sum_{k=1}$ and $\sum_{i=1}^{n}$ and $\sum_{j=1}^{n}$ by $\sum_{j=1}^{n}$ by $\sum_{j=1}^{n}$ and $\sum_{j=1}^{n}$ by $\sum_{j=1$ follows to minimize L : ∂w_j and ∂w_j are ∂w_j and ∂w_j are ? $= -2 \sum_{k} \frac{\partial_k}{\partial w_i} \sum_{k}$ $\underbrace{\partial L}$ $\qquad \qquad \overbrace{\text{k=1}}$ $\qquad \qquad \text{ow}_j$...where... analytically derive the partial derivative

Derivation of Update Rule
 $L = \sum_{k=1}^{N} (y_k - w^T x_k)^2$
 $\frac{\partial L}{\partial w_j} = \sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$

Gradient descent tells us

we should update **w** as

follows to minimize *L*: analytically derive the partial derivative

Derivation of Update Rule
 $L = \sum_{k=1}^{N} (y_k - w^T x_k)^2$
 $\frac{\partial L}{\partial w_j} = \sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$

Gradient descent tells us
 $= \sum_{k=1}^{N} 2 (y_k - w^T x_k) \frac{\partial}{\partial w_j} (y_k - w^T x_k)$

Go ∂w_j ∂L $\vec{\nabla}$ ∂ \vec{r} \rightarrow 2 $\frac{\partial}{\partial w_j} = \sum_{k=1}^{\infty} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$ ∂ \qquad $\partial w_j^{\left(\bigcup_{k=1}^{k} K \right)}$ (
EXECT)

($(y_k - w^T x_k)^2$
 $(x_k - w^T x_k) \frac{\partial}{\partial w_j} (y_k - w^T x_k)$ $(x_k)^2$ $N_{\rm{max}}$ $k=1$ e partial derivative

Update Rule
 $= \sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$ $= \sum_{k=1}^{N} 2(y_k - w^T x_k) \frac{\partial}{\partial w_j} (y_k - w^T x_k)$ $= -2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} w^T x_k$ $= -2 \sum_{k=1}^{N} \frac{\partial}{\partial w_j} \frac{\partial}{\partial w_j} w^T x_k$ (x_k) $\frac{1}{2w}(y_k - w^T x_k)$ $\partial \big|_{\mathcal{F}}$ and \mathcal{F} and \mathcal{F} $\partial w_j^{\left(\mathcal{S}^R \right)}$ $k=1$ ative
 $(y_k - w^T x_k)$

where $...$
 $y_k - w^T x_k$ (x_k) e partial derivative

Update Rule
 $=\sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$
 $=\sum_{k=1}^{N} 2(y_k - w^T x_k) \frac{\partial}{\partial w_j} (y_k - w^T x_k)$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} w^T x_k$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_k} \sum_{k=1}^{m} w_i x_{ki}$ $\partial \quad r$ $\partial w_j \stackrel{n \to \kappa}{\longrightarrow}$ $k=1$ / where $\|\cdot\|$ $w^T x_k$ e partial derivative

Update Rule
 $=\sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} w^T x_k$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} \frac{w^T x_k}{\left|\begin{array}{l}\text{...where...}\\ \delta_k = y_k - w^T x_k\end{array}\right|}$
 $=-2 \sum_{k=1}^{N} \delta_k x_k$
 $=-2 \sum_{k=1}^{N} \delta_k x_{kj}$ $\partial \nabla$ $\partial w_j \sum_{i=1}^N u_i \alpha_{ki}$ $N \qquad \qquad m \qquad \qquad$ $k=1$ $\qquad \qquad$ $i=1$ $\sum_{i=1}^{m} w_i x_{ki}$ $i=1$ **Update Rule**
 $=\sum_{k=1}^{N} \frac{\partial}{\partial w_j} (y_k - w^T x_k)^2$
 $=\sum_{k=1}^{N} 2(y_k - w^T x_k) \frac{\partial}{\partial w_j} (y_k - w^T x_k)$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} w^T x_k$
 $=-2 \sum_{k=1}^{N} \delta_k \frac{\partial}{\partial w_j} \sum_{i=1}^{m} w_i x_{ki}$
 $=-2 \sum_{k=1}^{N} \delta_k x_{kj}$
 $=-2 \sum_{k=1}^{N} \delta_k x_{kj}$

G \boldsymbol{N} $k=1$ $=$
 $\frac{1}{(x_k)^2}$
 $=$
 $\frac{1}{(x_k)^2}$
 $\frac{1}{(x_k)^2}$
 $=$
 x_k For some functions, we can analytically derive the partial de
 Example: Derivation of Update Rule

Function Loss
 $f(w, x_i) = w^T x_i$ $(y_i - w^T x_i)^2$
 $\left(\begin{array}{cc} 1 = \sum_{k=1}^N (y_k - w^T x_k)^2 & \frac{\partial L}{\partial w_j} = \sum_{k=1}^N \frac{\partial}{\partial w_j} (y_k - w^T x_k) \\$ (Assume w and x_i are column vectors, so same as $w \cdot x_i$)

Manual Differentiation

If we add a non-linearity (sigmoid), derivation is more complex

If we add a **non-linearity (sigmoid)**, derivation is more complex
\n
$$
\sigma(x) = \frac{1}{1 + e^{-x}}
$$
\nFirst, one can derive that: $\sigma^{(x)} = \sigma(x)(1 - \sigma(x))$
\n
$$
f(x) = \sigma\left(\sum_{k} w_{k}x_{k}\right)
$$
\n
$$
L = \sum_{i} \left(y_{i} - \sigma\left(\sum_{k} w_{k}x_{ik}\right)\right)^{2}
$$
\n
$$
\frac{\partial L}{\partial w_{j}} = \sum_{i} 2\left(y_{i} - \sigma\left(\sum_{k} w_{k}x_{ik}\right)\right) \left(-\frac{\partial}{\partial w_{j}}\sigma\left(\sum_{k} w_{k}x_{ik}\right)\right)
$$
\n
$$
= \sum_{i} -2\left(y_{i} - \sigma\left(\sum_{k} w_{k}x_{ik}\right)\right) \sigma'\left(\sum_{k} w_{k}x_{ik}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k}x_{ik}
$$
\n
$$
= \sum_{i} -2\delta_{i}\sigma(d_{i})(1 - \sigma(d_{i}))x_{ij}
$$
\nwhere $\delta_{i} = y_{i} - f(x_{i})$ $d_{i} = \sum w_{k}x_{ik}$
\n
$$
\sigma_{i} = \sigma\left(\sum_{j=1}^{m} w_{j}x_{i}\right)
$$
\n
$$
\sigma_{i} = \sigma\left(\sum_{j=1}^{m} w_{j}x_{i}\right)
$$
\n
$$
\sigma_{i} = y_{i} - \sigma_{i}
$$
\nAdding a Non-linear Function

 σ $\left(\nabla$ $\right)$ The sigmoid perception update rule:

The sigmoid perception update rule:
\n
$$
x_{ik}
$$
\n
$$
\begin{bmatrix}\n1 \\
\hline\n0.5 \\
x_{ik}\n\end{bmatrix}
$$
\nThe sigmoid perception update rule:
\n
$$
w_j \leftarrow w_j + 2\eta \sum_{k=1}^{N} \delta_i \sigma_i (1 - \sigma_i) x_{ij}
$$
\nwhere $\sigma_i = \sigma \left(\sum_{j=1}^{m} w_j x_{ij} \right)$
\n
$$
\delta_i = y_i - \sigma_i
$$
\n
$$
\begin{bmatrix}\n\text{deografia} \\
\hline\n\text{Reoidal}\n\end{bmatrix}
$$

Adding a Non-Linear Function

Given a library of simple functions

Decomposing a Function

Sizes: $[c \times (d + 1)]$ $[(d + 1) \times 1]$

Where c is number of classes

 d is dimensionality of input

Closer Look at a Linear Classifier

Georg

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s\in\mathbb{R}^1$, vector $v\in\mathbb{R}^m$, i.e. $v=[v_1,v_2,...,v_m]^T$ \boldsymbol{T} and matrix $M \in \mathbb{R}^{k \times \ell}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m) $\left| \frac{\partial s}{\partial v_2} \right|$
- What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m) $\begin{array}{c|c} \hline \vdots & \hline \partial v_m \end{array}$

$$
\left[\frac{\partial s}{\partial v_1} \frac{\partial s}{\partial v_1} \cdots \frac{\partial s}{\partial v_m}\right]
$$

$$
\begin{bmatrix}\n\frac{\partial v_1}{\partial s} \\
\frac{\partial v_2}{\partial s} \\
\vdots \\
\frac{\partial v_m}{\partial s}\n\end{bmatrix}
$$

Dimensionality of Derivatives

Conventions:

This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia)

Dimensionality of Derivatives

Conventions:

• What is the size of $\frac{\partial s}{\partial M}$? A matrix: $\frac{\partial s}{\partial M}$? A matrix:

- What is the size of $\frac{\partial L}{\partial w}$?
	- Remember that loss is a scalar and W is a matrix:

Jacobian is also a matrix:

 W

Dimensionality of Derivatives

Batches of data are matrices or tensors (multidimensional matrices)

Examples:

- Each instance is a vector of size m, our batch is of \mathcal{X}_{n1} nes of data are **matrices** or **tensors** (multi-
nsional matrices)
nples:
Each instance is a vector of size m , our batch is of
size $[B \times m]$
Each instance is a matrix (e.g. grayscale image) of
size $W \times H$, our batch is
- Each instance is a matrix (e.g. grayscale image) of
- Each instance is a multi-channel matrix (e.g. color has of data are **matrices** or **tensors** (multi-

misional matrices)
 pales:

Each instance is a vector of size m , our batch is of

size $[B \times m]$

Each instance is a matrix (e.g. grayscale image) of
 Flatter

size $W \$

Jacobians become tensors which is complicated $\begin{array}{ccc} x_{22} & x_{22}$

- \bullet Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors \mathcal{X}_{nn}

Jacobians of Batches

