
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Neural Networks
• Backpropagation

Administrivia

• Assignment 1 out!
• Due Feb 7th

• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Piazza
• Be active!!!
• Extra credit!

• Office hours
• Let us know special topic requests (e.g. PS0, Assignment 1, research paper

discussion, etc.)

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

Derivatives

⬣ We can find the steepest descent direction by
computing the derivative (gradient):

⬣ Steepest descent direction is the negative
gradient

⬣ Intuitively: Measures how the function
changes as the argument a changes by a small
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the
loss function changes as weights are varied

⬣ Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Gradient Descent

This idea can be turned into an algorithm (gradient descent)

⬣ Choose a model:

⬣ Choose loss function: 𝒊 𝒊
𝟐

⬣ Calculate partial derivative for each parameter:
𝝏𝑳

𝝏𝒘𝒊

⬣ Update the parameters: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Add learning rate to prevent too big of a step: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

⬣ Repeat (from Step 3)

Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of
data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and
take a set

Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

Gradient descent tells us
we should update 𝒘 as
follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐𝑵
𝒌ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜼
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
=

𝝏

𝝏𝒘𝒋
(𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐

𝑵

𝒌ୀ𝟏

= 𝟐 𝒚𝒌 − 𝒘𝑻𝒙𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒌 − 𝒘𝑻𝒙𝒌)

= −𝟐 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

𝒘𝑻𝒙𝒌

= −𝟐 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

 𝒘𝒊𝒙𝒌𝒊

𝒎

𝒊ୀ𝟏

= −𝟐 𝜹𝒌𝒙𝒌𝒋

𝑵

𝒌ୀ𝟏

𝜹𝒌 = 𝒚𝒌 − 𝒘𝑻𝒙𝒌

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑘)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 𝒘𝒌𝒙𝒌

𝒌

L = 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝟐

𝒊

𝝏𝑳

𝝏𝒘𝒋
= 𝟐 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝒊

= −𝟐 𝒚𝒊 − 𝝈 𝒘𝒌𝒙𝒊𝒌

𝒌

𝝈′ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝒊

𝝏

𝝏𝒘𝒋
 𝒘𝒌𝒙𝒊𝒌

𝒌

= −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = 𝒘𝒌𝒙𝒊𝒌

where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜼 𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈 𝒘𝒋𝒙𝒊𝒋

𝒎

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

A linear classifier can be broken down into:

⬣ Input

⬣ A function of the input

⬣ A loss function

It’s all just one function that can be decomposed into building blocks

What Does a Linear Classifier Consist of?

Input Model Loss Function

The same two-layered neural network
corresponds to adding another
weight matrix

⬣ We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝟏 𝟐

𝟏 𝟐 𝟐 𝟏

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

⬣ The number of nodes could grow
unreasonably (exponential or worse)
with respect to the complexity of the
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input
layer

hidden
layer 1

hidden
layer 2

output
layer 𝟏 𝟐 𝟑 𝟐 𝟏

Demo
• http://playground.tensorflow.org

Computation
Graphs

Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss
Function

The world is compositional!

We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

Compositionality

⬣ Pixels -> edges -> object parts -> objects

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

pixels edge texton motif part object

sample spectral
band

formant motif phone word

character NP/VP/.. clause sentence storyword

VISION

SPEECH

NLP

⬣ We are learning complex models with significant amount of
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss
Function

𝒊
?

Decomposing a Function

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝐬𝐢𝐧(𝒙)

𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 20

Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 21

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 22

Example

𝟏

𝟐

*

Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Backpropagation

Given this computation graph, the training
algorithm will:

⬣ Calculate the current model’s outputs
(called the forward pass)

⬣ Calculate the gradients for each
module (called the backward pass)

Backward pass is a recursive algorithm that:

⬣ Starts at loss function where we know
how to calculate the gradients

⬣ Progresses back through the modules

⬣ Ends in the input layer where we do
not need gradients (no parameters)

This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

κି𝟏 κ

FunctionInput Output

Parameters

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

⬣ Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

⬣ We will also pass the gradient of
the loss with respect to the
module’s inputs

⬣ This is not required for
update the module’s weights,
but passes the gradients
back to the previous module

Backward Pass Computations

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:

⬣ We can compute local gradients:
𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ We are given:
𝝏𝑳

𝝏𝒉κ

⬣ Compute:
𝝏𝑳

𝝏𝒉κష𝟏,

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

⬣ We can compute local gradients:
𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its
parameters and inputs!

Example: If κ κି𝟏

then
𝝏𝒉κ

𝝏𝒉κష𝟏

and
𝝏𝒉𝒊

κ

𝝏𝒘𝒊

κି𝟏,𝑻

Computing the Local Gradients: Example

⬣ We want to to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ
Loss

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

Given by upstream
module (upstream
gradient)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

38
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

39
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

40

e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

41

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

42

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

43

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

44

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

45

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

46

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

47

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

48

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

49

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

50

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

51

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

52

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

53

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 64

+

+

FPROP BPROP
S

U
M

C
O

P
Y

Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)

(C) Dhruv Batra 65

66

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

67

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

68

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

69

Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

70

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation
and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

⬣ Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for
efficient computation

⬣ We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

2 1

𝟏 𝟐 𝟏 𝟐 𝟐 We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

⬣ Assign intermediate variables

Simplify notation:

Denote bar as: ଷ
డ

డయ

⬣ Start at end and move
backward

Example

𝟑

𝟐𝟏

Example

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients
from multiple
paths
summed

Path 1
(P1)

Path 2
(P2)

Patterns of Gradient Flow: Addition

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Multiplication

1 2

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

Several other patterns as well, e.g.:

Max operation selects which path to
push the gradients through

⬣ Gradient flows along the path
that was “selected” to be max

⬣ This information must be
recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep
neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

5 1

5

gradient

gradient

⬣ Key idea is to explicitly store
computation graph in
memory and corresponding
gradient functions

⬣ Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

Computational Implementation

𝟐
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
𝟏 𝟐

1

𝟑

𝟐𝟏

2

Note that we can also do forward
mode automatic differentiation

Start from inputs and propagate
gradients forward

Complexity is proportional to input
size

⬣ However, in most cases our
inputs (images) are large and
outputs (loss) are small

Automatic Differentiation

1 2

�̇�𝟑 = �̇�𝟏+ �̇�𝟐

�̇�𝟏 �̇�𝟏 �̇�𝟐

�̇�𝟏 = 𝐜𝐨𝐬(𝒙𝟏)�̇�𝟏 �̇�𝟐 = �̇�𝟏𝒙𝟐 + 𝒙𝟏�̇�𝟐

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

𝒉 𝒙

MM MM

Add

Tanh

A graph is created on the fly
Back-propagation uses the

dynamically built graph

From pytorch.org

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Computation graphs are not
limited to mathematical
functions!

⬣ Can have control flows (if
statements, loops) and
backpropagate through
algorithms!

⬣ Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

