
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Backpropagation / Automatic Differentiation
• Jacobians

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 3

Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 4

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 5

Example

𝟏

𝟐

*

Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Backpropagation

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

⬣ We want to to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ
Loss⬣ 𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

Given by upstream
module (upstream
gradient)

Calculated
Analytically

18

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 20

+

+

FPROP BPROP
S

U
M

C
O

P
Y

21

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Linear
Algebra

View:
Vector and

Matrix Sizes

Closer Look at a Linear Classifier

Sizes:

Where is number of classes

is dimensionality of input

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏

𝟐

𝒎

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×κ

M

M

𝟏

𝟐

𝟏

𝟐

Tensors

Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×κ

⬣ What is the size of
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size)

⬣ What is the size of
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size)

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎

Conventions:

⬣ What is the size of
𝝏𝒗𝟏

𝝏𝒗𝟐 ?

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row

Col

𝟏
𝟏

𝟏
𝟐

𝒊
𝟏

𝟏
𝟐

𝒊
𝟏

𝒋
𝟐

𝒊
𝟏

𝒎𝟐
𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ଵ ଶ

Dimensionality of Derivatives

Conventions:

⬣ What is the size of
𝝏𝒔

𝝏𝑴
?

[𝟏,𝟏]

[𝒊,𝒋]

A matrix:

Examples

𝟏

𝟐
𝟐

𝑻
𝒌 𝒌

𝒌

Example 1:

Example 2:

𝟏 𝒎

𝟏 𝒎 because
𝒌 𝒌

𝒌

𝒊
𝒊

𝑻

Examples

𝝏(𝒘𝑨𝒘)

𝝏𝒘
𝑻 (assuming A is symmetric)

Example 3:

Example 4:

Row

Col
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

= 𝒊𝒋 𝒊 𝒊𝒋 𝒋

𝒋

Dimensionality of Derivatives in ML

⬣ What is the size of
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:

Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size m, our batch is of
size [𝑩 × 𝒎]

⬣ Each instance is a matrix (e.g. grayscale image) of
size 𝑾 × 𝑯, our batch is [𝑩 × 𝑾 × 𝑯]

⬣ Each instance is a multi-channel matrix (e.g. color
image with R,B,G channels) of size 𝑪 × 𝑾 × 𝑯, our
batch is [𝑩 × 𝑪 × 𝑾 × 𝑯]

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of
derivatives!

⬣ This can also be done for partial derivatives
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏

Vectorization
and

Jacobians of
Simple
Layers

Composition of Functions & Chain Rule

κ κି𝟏 𝟏

Composition of Functions:

A complex function (e.g. defined by a neural network):

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

κ κି𝟏 𝟏

Scalar Case

Vector Case

Jacobian View of Chain Rule

Graphical View of Chain Rule

Chain Rule: Cascaded

⬣ Input: 𝑫

⬣ Binary label:

⬣ Parameters: 𝑫

⬣ Output prediction:
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss:
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato

We have discussed computation
graphs for generic functions

Machine Learning functions
(input -> model -> loss function)
is also a computation graph

We can use the computed
gradients from
backprop/automatic
differentiation to update the
weights!

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙

Automatic differentiation:

⬣ Carries out this procedure for us
on arbitrary graphs

⬣ Knows derivatives of primitive
functions

⬣ As a result, we just define these
(forward) functions and don’t
even need to specify the
gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆ି𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from
L to w

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆ି𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

𝟏

𝝈 𝒘𝑻𝒙
𝑻 𝑻 𝑻

1xd1x11x11x1

Fully Connected (FC) Layer: Forward Function

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

𝒊
𝑻

κ κି𝟏κ κି𝟏

Define:

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾κ

κష𝟏

κି𝟏 κ

κ

κି𝟏

κି𝟏 κ κି𝟏κ

Define:

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse – each
output only affected by
corresponding weight row

κ

κష𝟏

𝒊 𝒊
κ

𝒊
κ

𝒊

𝝏𝒉𝒊
κ

𝝏𝒘𝒊

κି𝟏 κ κି𝟏κ

Define:

We can employ any differentiable
(or piecewise differentiable)
function

A common choice is the Rectified
Linear Unit

⬣ Provides non-linearity but better
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
c

2

1.
8

1.
6

1.
4

1.
2
1

0.
8

0.
6

0.
4

0.
2
0

-2 -
1.
5

-1 -
0.
5

0 0.
5

1 1.
5

2

max(0,_)

Full Jacobian of ReLU layer is large
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero
because it is element-wise

⬣ An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

⬣ Gradient will be zero if input
<= 0

Jacobian of ReLU

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

Forward: κ κି𝟏

Backward:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

|𝒉κ × 𝒉κି𝟏|

κି𝟏

κି𝟏

Backpropagation
and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

⬣ Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for
efficient computation

⬣ We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

2 1

𝟏 𝟐 𝟏 𝟐 𝟐 We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

⬣ Assign intermediate variables

Simplify notation:

Denote bar as: ଷ
డ௙

డ௔య

⬣ Start at end and move
backward

Example

𝟑

𝟐𝟏

Example

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients
from multiple
paths
summed

Path 1
(P1)

Path 2
(P2)

Patterns of Gradient Flow: Addition

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Multiplication

1 2

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

Several other patterns as well, e.g.:

Max operation selects which path to
push the gradients through

⬣ Gradient flows along the path
that was “selected” to be max

⬣ This information must be
recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep
neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

5 1

5

gradient

gradient

⬣ Key idea is to explicitly store
computation graph in
memory and corresponding
gradient functions

⬣ Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

Computational Implementation

𝟐
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
𝟏 𝟐

1

𝟑

𝟐𝟏

2

Note that we can also do forward mode
automatic differentiation

Start from inputs and propagate gradients
forward

Complexity is proportional to input size

⬣ Memory savings (all forward pass, no
need to store activations)

⬣ However, in most cases our inputs
(images) are large and outputs
(loss) are small

Automatic Differentiation

1 2

𝒘̇𝟑 = 𝒘̇𝟏+ 𝒘̇𝟐

𝒙̇𝟏 𝒙̇𝟏 𝒙̇𝟐

𝒘̇𝟏 = 𝐜𝐨𝐬(𝒙𝟏)𝒙̇𝟏 𝒘̇𝟐 = 𝒙̇𝟏𝒙𝟐 + 𝒙𝟏𝒙̇𝟐

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

𝒉 𝒙

MM MM

Add

Tanh

A graph is created on the fly
Back-propagation uses the

dynamically built graph

From pytorch.org

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Computation graphs are not
limited to mathematical
functions!

⬣ Can have control flows (if
statements, loops) and
backpropagate through
algorithms!

⬣ Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

