Topics:
* Backpropagation / Automatic Differentiation

e Jacobians

CS 4803-DL / 7643-A
ZSOLT KIRA

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

Directed Acyclic Graphs (DAGSs)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay

Georgia |
Tech|)

Directed Acyclic Graphs (DAGSs)

* Concept

— Topological Ordering

Directed Acyclic Graphs (DAGSs)

f(x1,x32) = In(xq) + x1x, — sin(x;)

w-x [— —log(p) —

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Machine Learning Example

Backpropagation

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dlL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

x>

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Tech

‘ _:: Georgia LGJ

oL aL}
oht—1’ ow

We want to to compute: {

dL JL aL
ah%’—l aw | : 0ss
3
! + 9L

We will use the chain rule to do this:

0z dz 0y

h Rule: — .
Calnueax Jy ox

» Computing the Gradients of Loss

oL 6L}
oht—1’ ow

We will use the chain rule to compute: {

|

.] oL dL dhn?’ Gi b ¢
Gradient of loss w.r.t. inputs: = L iven by upstream
P dht~1 ot on‘-1 module (upstream

gradient)
_ : dL _ dL on’
Gradient of loss w.r.t. weights: —— =—— —
oL oL
71 ah’
Oh Oh Calculated
Analytically

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computing the Gradients of Loss

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

g=z+y 21 %_;

oz Yoy T
_ of _ _ of _ Chain rule: Ay
f—qz aq—zaaz_q ﬂ_ifaq
~0f of Oof Oy~ dq By
Want: 5z By’ 0z

ol X
Upstream Local
gradient gradient

) Georgia |
Tedh |

Gradients add at branches

7

Duality in Fprop and Bprop

2 <cmath>
<vector>

"caffe/layers/sigmoid_layer.hpp"

te <typename Dtype»
1d(Dtype x) {

* exp(-x));

Dtype>
oidLayer<Dtype>::Forward _cpu
>*>& top) {
t Dtype* bottom data = bottom[8]->cpu_data();
Dtype* top_data = top[d]-»mut t

= bottom[8]->

15t vector<Blob<Dtype>*>& bot

(1 < count; ++1) {

Dtype>
r<Dtype>: :Backward_cpu(c
1>& propagate_down,
vector<Blob<Dtype>*> bottom) {
(propagate_down[0]) {
const Dtype* top_data = top[8]
onst Otype* top_diff = to
Dtype* bottom diff = botto
on count = bottoa[8]->co
ki 1 < count; *+i) {
Dtype sigmoid x = top data[i];
Tr(1] = top_aire[sigmoid_x

1 1 ':.s;gn:nr);""
:

top_data[1] = sigeoid(bottos data{1]); ‘/
)

Caffe Sigmoid Layer

(1-o(z))o(z)

#ifdef CPU_ONLY
(StgmoidLayer);

(SigmoldLayer);

Caffe is licensed under BSD 2-Clause

* top_diff (chain rule

Linear
Algebra
View:

Vector and
Matrix Sizes

Wi1 Wiz 0 Wi b1 X
Wa1 Wzz -+ Wz b2] .
W31 W3z = Wam D3] |,
1
w X

Sizes: [cx(d+1)] [(d+1)x1]

Where ¢ is number of classes

d is dimensionality of input

) Closer Look at a Linear Classifier Gegutin)

Conventions:
Size of derivatives for scalars, vectors, and matrices:
T

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., U]
and matrix M € Rk**

s [] V“ M
s 9517 9s | 1 0s

052 - 617 - aM

v | vy | '
V' %] v, | ‘
Mol Tensors

Georgia [ﬁ]

Dimensionality of Derivatives Tech ||

Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R!, vector v € R™, i.e. v = [v, V3, ..., U]

and matrix M € Rkx? v -
V1

s
What is the size of% ? R™*1 (column vector of size m) |av,
as

What is the size of% ? R™ (row vector of size m) v,

L Js

ds O0s ds
dv, 0vy OV,

) Dimensionality of Derivatives Gegrata |

Conventions:

1
What is the size of% ? A matrix:

Row J/

1
0v;

2
ov]
v}

2
ovy

Colj

v}

2
c’)v]-

This matrix of partial derivatives is called a Jacobian

v}

vy,

my; X m,

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

) Dimensionality of Derivatives

Georgia L&

Tech

Conventions:

What is the size of ;—; ? A matrix:

ds
am[m]

ds
omy;

Dimensionality of Derivatives Gegrata |

Example 1:
v =[5, =2 2 =[]

Example 2:

y=wlx= Zwkxk
K

dy |0y dy

dx |dx; "’
X x1 xm a(Zk kak) B

w.
ax,- l

= [wyq,..,Wwn]l because

) Examples Gegraia)

Example 3:

d(wAw)
ow

= 2w’ A (assuming A is symmetric)

Example 4:

y =Wx — =W

oy
axl LR LN LN LN eo e
- - -... — LU LU - . L L y : W..x.
Rowi/7 |.. .. 9% . . = Wij Yi z :) hdd |
ax] LY LY LN LN LN j

) Examples Gegraia)

. . oL
9% 9
What is the size of il

Remember that loss is a scalar and W is a matrix:

Wi Wiz - Wy b1
Wy1 Wiz - Wy b2
W31 W3z 0 Wz, b3
Jacobian is also a matrix: W
- dL JL JL JL 7
0w11 awlz awlm 6b1
oL JL JL
o T dwe 9b,
oL JL
6W3m abg_

Dimensionality of Derivatives in ML Gograla

Batches of data are matrices or tensors (multi- X117 X12 X1n
dimensional matrices) X917 X2 v Xap
Examples: : : K :
Each instance is a vector of size m, our batch is of Xn1 Xn2 " Xand
size [B X m|]
Each instance is a matrix (e.g. grayscale image) of Flatten @

size W x H, our batch is [B X W X H]

X11

Each instance is a multi-channel matrix (e.g. color X12
image with R,B,G channels) of size C x W x H, our .
batch is [B X C x W x H| x.

21

Jacobians become tensors which is complicated X2o
Instead, flatten input to a vector and get a vector of :

derivatives! X1
This can also be done for partial derivatives :

between two vectors, two matrices, or two tensors | Xnn

) Jacobians of Batches Gegrgia |

Vectorization
and
Jacobians of

Simple
Layers

Composition of Functions: f(g(x)) = (f° g)(x)

A complex function (e.g. defined by a neural network):
fx) =g, (.9#—1(---!]1(75)))
fX)=9¢°890-1--°91

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Secoet

) Scalar Case Gegrgia |

) Vector Case Gegrgia |

Jacobian View of Chain Rule Gegrgia |

Graphical View of Chain Rule Gegrata |

) Chain Rule: Cascaded Gegrgia |

Input; x € RP
Binary label: y € {—1, +1}

Parameters: w € RP

1
Output prediction: p(y = 1|x) = - i T j
e wt X e

1
Loss: L =~ lw||? — Alog(p(y|x))
A

L

Log Loss

Adapted from slide by Marc'Aurelio Ranzato

&0
Linear Classifier: Logistic Regression Ge%;%!$

We have discussed computation
graphs for generic functions

Machine Learning functions _ log< 1 _ >

(input -> model -> loss function) 1+e™?

IS also a computation graph ‘

We can use the computed u 1 p L
gradients from wl x + — = logs(® [—
backprop/automatic U

differentiation to update the
weights!

) Neural Network Computation Graph

L=1

u X p L _ oL 1
p = ——

1+e™ 1
where p = o(w'x) and o(x) = —
Automatic differentiation:
_ _ _ 9L _dL du _ __ T
Carries out this procedure for us W=ow ouow W

on arbitrary graphs

We can do this in a combined way to see all terms

Knows derivatives of primitive together:

functions oL o
o0 0L dp ou _ T _ T T
w= dp Ou ow a(wTx) U(W .X')(l d (W x))x

As a result, we just define these
(forward) functions and don’t

even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

The chain rule can be u X p L
computed as a series of wix [—> e [—log(p) —
scalar, vector, and matrix L
linear algebra operations] [] Cl L]
o 1x1 1x1
1xd
dx1
Extremely efficient in B
graphics processing units w= (,(wrx) a(w'x)(1—a (w'x))x"
(GPUs) o J o A s I
1x1 1x1 Ix1 1xd

>

Vectorized Computations

Input Function Output

Parameters
Define:
{ _ £—1
o Tpi-1 h* = Wh
hi — Wi h - - :_ T_: -
Wi

K| x1 |h¢| x |hf~1| |Rf1|x1

) Fully Connected (FC) Layer: Forward Function

h* = wh*1

£

62’;—1 — W
_ oL | oL on’

lDzefme:Thf—) o1 9h! ohi1

. W, - -
= (10]

i _ h(f—l),T
aWi

1x |h?~1 1x|h?| |h?|x |h Y

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht1 Jacobian tensor!
But it is sparse — each
ah? . output only affected by
oht-1 w corresponding weight row
'
Define: JL al‘{) ghi
— wTht-1 ow;| dh! Ow;
o DL e
- 0 -
ahf < onl
L — h(f_l)JT aw,- g
aWi < 0 =

1 x |ht~1| 1 x |h?| || x |h*71|

) Fully Connected (FC) Layer

We can employ any differentiable
(or piecewise differentiable)
function

N

I Rl N it T
" " " "

A common choice is the Rectified
Linear Unit

Provides non-linearity but better
gradient flow than sigmoid

Performed element-wise | g . inax(O h{) 1)

. (O,
How many parameters for this layer? E max0..) a

) Rectified Linear Unit (RelLU)

oNCPrCH PP
.
T T T T

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=(

Input Function Output

|4
Parameters

Forward: h* = max(0, h‘™1)

dL dh’
h€—1 ah€ ah{’—l

Backward: p oL _

AN

|h? x b1

ahf—l

dL (1 ifnt-1>0
0 otherwise

) Jacobian of ReLU

Backpropagation

and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

&@
=@

) Deep Learning = Differentiable Programming Georaif] <

f(x1,%2) = x1x2 + sin(xy)

Example

We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

Assign intermediate variables

Simplify notation:
of

Denote bar as: a; = FPN
3

Start at end and move
backward

f(x1,x2) = x1x5 + sin(x;) a; = oF _ 1

aag
____df _ of daz _ Of d(ay+az) _ Of ., _
a, = = = = 1=a;3
aal 6a3 aal aag aal aag
__ df of daz —_
a, = = = Qa
2 aaz aag aa2 3
P1 af daq _
X =— —=a4q4 Cos\x
2 6a1 6x2 1 (2)
Gradients
a da a d(x1x2 — i
xIZ’Z _Of Qdap _ of 0(x1x2) _ azx from multiple
aaz axz aaz axz paths
summed
__ 3 day __
=— — =0a»X
1 aaz 6x1 272

Example

f(x1,%2) = x1x2 + sin(xy)

__ _df _ Of daz _ of d(ajtay) _ Of e
a, = = = = 1=a;3
aal aag aa1 aag aal aag
. 8f of daz __
a, = = = Qa
2 aaz aag aaz 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(x1,%2) = x1x2 + sin(xy)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

___ df da, Of OA(x1x2) __
= = = a2x1
aaz axz aaz 6x2

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 2 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

&

) Patterns of Gradient Flow: Other Ge%ggé

__ f day

2 =5~ o

Key idea is to explicitly store da; ax, — 1 c€os(xz)
computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

Note that we can also do forward mode
automatic differentiation

t

Start from inputs and propagate gradients W3 = Wi+ W,

forward @

Complexity is proportional to input size
p y p p p W1 = cos(xl)icl Wz = xle + xle

Memory savings (all forward pass, no
need to store activations) @

However, in most cases our inputs X1 X1 X7
(images) are large and outputs
(loss) are small

) Automatic Differentiation

A graph is created on the fly

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
From pytorch.org

Computation Graphs in PyTorch Ge?ré%é

Convolutional network (AlexNet)

PP Ll

input image

weights

z | A=
Ll | Lals
loss 2
. | Bty *
oy R
& . e
-3
3 ——
ar a .
- I) - S
o e |
2] 4 Figure copyright Alex Krizhevsky, Ilya Sutskever, and
. Geoffrey Hinton, 2012. Reproduced with permission.

"
Guiood Buyood f
Yo __wi
LI L I\
\ [|
| . -
M e N| ik
N = \ N
|\ N
8

Georgia |

Tech|)

Neural Turing Machine

//

input image

Georgia |

Tech|)

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\\)
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 2.0\

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Ge%;gé g

