
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Optimization (Cont)
• Imbalance
• Convolution



Administrivia

• Assignment 2
• Implement convolutional neural networks

• Facebook Lectures: Data wrangling video available online
• See dropbox link piazza @8 and M1L4 folder
• Opportunity to talk to them Wed. 02/17 4-5pm



Even given a good neural network 
architecture, we need a good optimization 
algorithm to find good weights

⬣ What optimizer should we use? 

⬣ Different optimizers make different 
weight updates depending on the 
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima



⬣ This condition leads to a 
simple initialization rule, 
sampling from uniform 
distribution:

𝟔
 

𝒏𝒋ା𝒏𝒋శ𝟏

𝟔
 

𝒏𝒋ା𝒏𝒋శ𝟏

⬣ Where 𝒋 is fan-in
(number of input nodes) 
and 𝒋ା𝟏 is fan-out
(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar 
to that of input!

Distribution of activation values 
of a network with tanh non-
linearities, for increasingly deep 
layers

From "Understanding the difficulty of training deep 
feedforward neural networks." AISTATS, 2010.



Learnable Scaling and Offset

⬣ We can give the model 
flexibility through 
learnable parameters 

(scale) and (shift)

⬣ Network can learn to not 
normalize if necessary!

⬣ This layer is called a 
Batch Normalization 
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Adam

Solution: Time-varying bias 
correction

Typically 𝟏 𝟐

So 𝒊 will be small number 
divided by (1-0.9=0.1) resulting 
in more reasonable values (and 

𝒊 larger)
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Regularization



Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2:  𝒊
𝟐 𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒊
𝟐 𝟐

Regularization

Many standard regularization methods still apply!

L1 Regularization

where is element-wise 



Problem: Network can learn to rely strong on a few features that work 
really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

An idea: For each node, keep its output with probability 

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



⬣ In practice, implement 
with a mask calculated 
each iteration

⬣ During testing, no 
nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.
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⬣ During training, each node has an 
expected nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have 
similar train and test-time 
input/output distributions! 

Solution: During test time, scale 
outputs (or equivalently weights) by 

⬣ i.e. 𝒕𝒆𝒔𝒕

⬣ Alternative: Scale by 
𝟏 

𝒑
at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.
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Interpretation 1: The model should 
not rely too heavily on particular 
features

⬣ If it does, it has probability 
of losing that feature in an 
iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 
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hidden 
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output 
layer



Interpretation 1: The model should 
not rely too heavily on particular 
features

⬣ If it does, it has probability 
of losing that feature in an 
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Data 
Augmentation



Data augmentation – Performing a range of transformations to 
the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or 
label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation



Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix



Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



We can apply generic affine 
transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations



We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”

mix

Noise
CowMask m Masked 

Image 𝑥෤

Unlabelled 
Image 𝑥ො

mix

Mean

Masked 
Image 𝑥ො௠

CowMask m

Unlabelled 
Image 𝑥ො௕

Unlabelled 
Image 𝑥ො௔

Mask proportion p



The Process 
of Training 

Neural 
Networks



⬣ Training deep neural networks is an art 
form!

⬣ Lots of things matter (together) – the key 
is to find a combination that works

⬣ Key principle: Monitoring everything to 
understand what is going on!

⬣ Loss and accuracy curves

⬣ Gradient statistics/characteristics

⬣ Other aspects of computation graph

The Process of Training

Optimizer
Trajectory

Local
Minima



Always start with proper methodology!

⬣ Not uncommon even in published papers 
to get this wrong

Separate data into: Training, validation, test 
set 

⬣ Do not look at test set performance until 
you have decided on everything (including 
hyper-parameters)

Use cross-validation to decide on hyper-
parameters if amount of data is an issue

Proper Methodology



Check the bounds of your loss function

⬣ E.g. cross-entropy ranges from 

⬣ Check initial loss at small random weight 
values

⬣ E.g. for cross-entropy, 
where 

Another example: Start without 
regularization and make sure loss goes up 
when added

Key Principle: Simplify the dataset to make 
sure your model can properly (over)-fit 
before applying regularization

Sanity Checking 

Validation Loss



Change in loss indicates speed of 
learning:

⬣ Tiny loss change -> too small of a 
learning rate

⬣ Loss (and then weights) turn to NaNs -> 
too high of a learning rate

Other bugs can also cause this, e.g.:

⬣ Divide by zero

⬣ Forgetting the log!

In pytorch, use autograd’s detect 
anomaly to debug

Loss and Not a Number (NaN)

Learning 
Rate
Too Low

Learning 
Rate
Too High



⬣ Classic machine learning signs of 
under/overfitting still apply!

⬣ Over-fitting: Validation loss/accuracy starts to 
get worse after a while

⬣ Under-fitting: Validation loss very close to 
training loss, or both are high

⬣ Note: You can have higher training loss!

⬣ Validation loss has no regularization

⬣ Validation loss is typically measured at 
the end of an epoch

Overfitting

Validations

Training

Loss

Loss



Many hyper-parameters to tune!

⬣ Learning rate, weight decay 
crucial

⬣ Momentum, others more stable

⬣ Always tune hyper-parameters; 
even a good idea will fail un-
tuned!

Start with coarser search:

⬣ E.g. learning rate of {0.1, 0.05, 
0.03, 0.01, 0.003, 0.001, 0.0005, 
0.0001}

⬣ Perform finer search around good 
values

Hyper-Parameter Tuning

Automated methods are OK, but 
intuition (or random) can do well given 
enough of a tuning budget

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”, 
JMLR, 2012 
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Note that hyper-parameters and even module 
selection are interdependent!

Examples:

⬣ Batch norm and dropout maybe not be 
needed together (and sometimes the 
combination is worse)

⬣ The learning rate should be changed 
proportionally to batch size – increase 
the learning rate for larger batch sizes

⬣ One interpretation: Gradients are 
more reliable/smoother

Inter-dependence of Hyperparameters



Note that we are optimizing a loss 
function

What we actually care about is 
typically different metrics that we 
can’t differentiate:

⬣ Accuracy

⬣ Precision/recall

⬣ Other specialized metrics

The relationship between the two 
can be complex!

Relationship Between Loss and Other Metrics

relevant elements

selected elements

true positives false positives

false negatives true negatives

From https://en.wikipedia.org/wiki/Precision_and_recall



⬣ Example: Cross entropy loss

𝒊 𝒊

⬣ Accuracy is measured based on:

𝒊 𝒊 𝒊

⬣ Since the correct class score only has 
to be slightly higher, we can have flat 
loss curves but increasing 
accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 
inherent tradeoff between number of positive 
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑ା𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑ା𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑ା𝒕𝒏

𝒕𝒑ା𝒕𝒏ା𝒇𝒑ା𝒇𝒏

From 
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 
inherent tradeoff between number of positive 
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑ା𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑ା𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑ା𝒕𝒏

𝒕𝒑ା𝒕𝒏ା𝒇𝒑ା𝒇𝒏

⬣ We can obtain a curve by varying the 
(probability) threshold:

⬣ Area under the curve (AUC) common 
single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From 
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic



Resource:

⬣ A disciplined approach to 
neural network hyper-
parameters: Part 1 --
learning rate, batch size, 
momentum, and weight 
decay, Leslie N. Smith

Resources 

Optimizer
Trajectory

Local
Minima



Cross-
Validation

&
Class 

Imbalance



population sample

The Data Wrangling Process

36

cross-validation

train

test

Learn Model

Evaluate Model

Step 1. What is the population of interest? What sample S are we 
evaluating, and is sample S representative of the population?



population sample

The Data Wrangling Process

37

cross-validation

train

test

Learn Model

Evaluate Model

Step 2. How do we cross-validate to evaluate our 
model? How do we avoid overfitting and data mining?



Data Wrangling

Cross-Validation

(Hastie et al., 2011)



Data Wrangling

Cross-Validation Best Practices

1. Random search vs. Grid Search for Hyperparameters 
(Bergstra and Bengio, 2012)

2. Confirm hyperparameter range is sufficient such as 
plotting out-of-bag (OOB) error rate

3. Temporal cross-validation considerations
4. Check for overfitting



Data Wrangling

Class Imbalance

(Altenburger and Ho, under review 2020)



Data Wrangling

Class Imbalance

(Altenburger and Ho, under review 2020)



Data Wrangling

Object Detection
Region CNN (R-CNN) and Single Shot Detector (SSD) are 
models that can localize and classify many objects in an 
image

R-CNN: Girshick, SSD: Liu



Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely 
sample many boxes of different sizes at different “anchor” 
locations in the image



Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely 
sample many boxes of different sizes at different “anchor” 
locations in the image



Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely 
sample many boxes of different sizes at different “anchor” 
locations in the image



Data Wrangling

Class Imbalance: Object Detection
- Goal: Classify a proposal box into 

foreground or background
- IoU: intersection over union
- A proposal box is assigned a ground 

truth label of:
- Foreground, if IoU with ground 

truth box > 0.5
- Background, otherwise



Data Wrangling

Class Imbalance: Object Detection
# foreground boxes >>> # background boxes!



Data Wrangling

Class Imbalance: Focal Loss
Cross Entropy: easy examples incur a non-negligible loss, 
which in aggregate mask out the harder, rare examples

Focal Loss: down-weights easy examples, to give more 
attention to difficult examples

(Lin et al., 2017)



Data Wrangling

Class Imbalance: Focal Loss

(Lin et al., 2017)



Convolution 
Layers



Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed

Is this necessary? 

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Image features are spatially 
localized!

Smaller features repeated 
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in one location 
vs. another (stationarity)

Locality of Features

Can we induce a bias in the 
design of a neural network 
layer to reflect this?



Each node only receives input from 
𝟏 𝟐 window (image patch)

Region from which a node receives 
input from is called its  receptive 
field

Advantages: 

Reduce parameters to 𝟏 𝟐

where is number of output 
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐



Nodes in different locations can share 
features

No reason to think same feature 
(e.g. edge pattern) can’t appear 
elsewhere

Use same weights/parameters in 
computation graph (shared 
weights)

Advantages: 

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial 
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏



We can learn many such features 
for this one layer

Weights are not shared 
across different feature 
extractors

Parameters:  𝟏 𝟐

where is number of 
features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional 
analysis, convolution is a mathematical 
operation on two functions f and g producing a 
third function that is typically viewed as a 
modified version of one of the original functions, 
giving the area overlap between the two 
functions as a function of the amount that one of 
the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 
statistics, computer vision, image and signal 
processing, electrical engineering, and 
differential equations. 

Visual comparison of convolution and 
cross-correlation.



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

1D 
Convolution

2D 
Convolution

Notation:

𝒌 𝒏 𝒌ି𝒏

𝑵ି𝟏

𝒏ୀ𝟎

𝒚𝟎 = 𝒉𝟎 ȉ 𝒙𝟎 

𝒚𝟏 = 𝒉𝟏 ȉ 𝒙𝟎 + 𝒉𝟎 ȉ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ȉ 𝒙𝟎 + 𝒉𝟏 ȉ 𝒙𝟏 + 𝒉𝟎 ȉ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ȉ 𝒙𝟎 +  𝒉𝟐 ȉ 𝒙𝟏 + 𝒉𝟏 ȉ 𝒙𝟐 + 𝒉𝟎 ȉ 𝒙𝟑



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 
along image



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑
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𝑯ି𝟏
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𝒂ୀି
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Centering Around the Kernel

𝑾 = 𝟓
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Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and 
move back

Cross-correlation: Start in the beginning of 
kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)



𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 
does not matter!



Cross-Correlation

K’  =
1     0     − 1
2    0     − 2
1    0     − 1

X(0: 2,0: 2)  =
200  150     150
100     50     100
25     25       10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 
operations

Why bother with this and not just say it’s a 
linear layer with small receptive field?

There is a duality between them during 
backpropagation

Convolutions have various 
mathematical properties people care 
about

This is historically how it was inspired

?


