
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Optimization (Cont)
• Imbalance
• Convolution

Administrivia

• Assignment 2
• Implement convolutional neural networks

• Facebook Lectures: Data wrangling video available online
• See dropbox link piazza @8 and M1L4 folder
• Opportunity to talk to them Wed. 02/17 4-5pm

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

⬣ What optimizer should we use?

⬣ Different optimizers make different
weight updates depending on the
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima

⬣ This condition leads to a
simple initialization rule,
sampling from uniform
distribution:

𝟔

𝒏𝒋ା𝒏𝒋శ𝟏

𝟔

𝒏𝒋ା𝒏𝒋శ𝟏

⬣ Where 𝒋 is fan-in
(number of input nodes)
and 𝒋ା𝟏 is fan-out
(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar
to that of input!

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

Learnable Scaling and Offset

⬣ We can give the model
flexibility through
learnable parameters

(scale) and (shift)

⬣ Network can learn to not
normalize if necessary!

⬣ This layer is called a
Batch Normalization
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Adam

Solution: Time-varying bias
correction

Typically 𝟏 𝟐

So 𝒊 will be small number
divided by (1-0.9=0.1) resulting
in more reasonable values (and

𝒊 larger)

𝒊 𝟏 𝒊ି𝟏 𝟏
𝒊ି𝟏

𝒊 𝟐 𝒊ି𝟏 𝟐
𝒊ି𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊ି𝟏
𝒊

𝒊

Regularization

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2: 𝒊
𝟐 𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒊
𝟐 𝟐

Regularization

Many standard regularization methods still apply!

L1 Regularization

where is element-wise

Problem: Network can learn to rely strong on a few features that work
really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input
layer hidden

layer 1
hidden
layer 2

output
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

An idea: For each node, keep its output with probability

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

⬣ In practice, implement
with a mask calculated
each iteration

⬣ During testing, no
nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

input
layer hidden

layer 1
hidden
layer 2

output
layer

⬣ During training, each node has an
expected nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have
similar train and test-time
input/output distributions!

Solution: During test time, scale
outputs (or equivalently weights) by

⬣ i.e. 𝒕𝒆𝒔𝒕

⬣ Alternative: Scale by
𝟏

𝒑
at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should
not rely too heavily on particular
features

⬣ If it does, it has probability
of losing that feature in an
iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should
not rely too heavily on particular
features

⬣ If it does, it has probability
of losing that feature in an
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Data
Augmentation

Data augmentation – Performing a range of transformations to
the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or
label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation

Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix

Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

We can apply generic affine
transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations

We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”

mix

Noise
CowMask m Masked

Image 𝑥෤

Unlabelled
Image 𝑥ො

mix

Mean

Masked
Image 𝑥ො௠

CowMask m

Unlabelled
Image 𝑥ො௕

Unlabelled
Image 𝑥ො௔

Mask proportion p

The Process
of Training

Neural
Networks

⬣ Training deep neural networks is an art
form!

⬣ Lots of things matter (together) – the key
is to find a combination that works

⬣ Key principle: Monitoring everything to
understand what is going on!

⬣ Loss and accuracy curves

⬣ Gradient statistics/characteristics

⬣ Other aspects of computation graph

The Process of Training

Optimizer
Trajectory

Local
Minima

Always start with proper methodology!

⬣ Not uncommon even in published papers
to get this wrong

Separate data into: Training, validation, test
set

⬣ Do not look at test set performance until
you have decided on everything (including
hyper-parameters)

Use cross-validation to decide on hyper-
parameters if amount of data is an issue

Proper Methodology

Check the bounds of your loss function

⬣ E.g. cross-entropy ranges from

⬣ Check initial loss at small random weight
values

⬣ E.g. for cross-entropy,
where

Another example: Start without
regularization and make sure loss goes up
when added

Key Principle: Simplify the dataset to make
sure your model can properly (over)-fit
before applying regularization

Sanity Checking

Validation Loss

Change in loss indicates speed of
learning:

⬣ Tiny loss change -> too small of a
learning rate

⬣ Loss (and then weights) turn to NaNs ->
too high of a learning rate

Other bugs can also cause this, e.g.:

⬣ Divide by zero

⬣ Forgetting the log!

In pytorch, use autograd’s detect
anomaly to debug

Loss and Not a Number (NaN)

Learning
Rate
Too Low

Learning
Rate
Too High

⬣ Classic machine learning signs of
under/overfitting still apply!

⬣ Over-fitting: Validation loss/accuracy starts to
get worse after a while

⬣ Under-fitting: Validation loss very close to
training loss, or both are high

⬣ Note: You can have higher training loss!

⬣ Validation loss has no regularization

⬣ Validation loss is typically measured at
the end of an epoch

Overfitting

Validations

Training

Loss

Loss

Many hyper-parameters to tune!

⬣ Learning rate, weight decay
crucial

⬣ Momentum, others more stable

⬣ Always tune hyper-parameters;
even a good idea will fail un-
tuned!

Start with coarser search:

⬣ E.g. learning rate of {0.1, 0.05,
0.03, 0.01, 0.003, 0.001, 0.0005,
0.0001}

⬣ Perform finer search around good
values

Hyper-Parameter Tuning

Automated methods are OK, but
intuition (or random) can do well given
enough of a tuning budget

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”,
JMLR, 2012

Grid Layout Random Layout

Important
parameter

Important
parameter

U
n

im
p

o
rt

an
t

p
a

ra
m

et
e

r

U
n

im
p

o
rt

an
t

p
a

ra
m

et
e

r

Note that hyper-parameters and even module
selection are interdependent!

Examples:

⬣ Batch norm and dropout maybe not be
needed together (and sometimes the
combination is worse)

⬣ The learning rate should be changed
proportionally to batch size – increase
the learning rate for larger batch sizes

⬣ One interpretation: Gradients are
more reliable/smoother

Inter-dependence of Hyperparameters

Note that we are optimizing a loss
function

What we actually care about is
typically different metrics that we
can’t differentiate:

⬣ Accuracy

⬣ Precision/recall

⬣ Other specialized metrics

The relationship between the two
can be complex!

Relationship Between Loss and Other Metrics

relevant elements

selected elements

true positives false positives

false negatives true negatives

From https://en.wikipedia.org/wiki/Precision_and_recall

⬣ Example: Cross entropy loss

𝒊 𝒊

⬣ Accuracy is measured based on:

𝒊 𝒊 𝒊

⬣ Since the correct class score only has
to be slightly higher, we can have flat
loss curves but increasing
accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑ା𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑ା𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑ା𝒕𝒏

𝒕𝒑ା𝒕𝒏ା𝒇𝒑ା𝒇𝒏

From
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑ା𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑ା𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑ା𝒕𝒏

𝒕𝒑ା𝒕𝒏ା𝒇𝒑ା𝒇𝒏

⬣ We can obtain a curve by varying the
(probability) threshold:

⬣ Area under the curve (AUC) common
single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic

Resource:

⬣ A disciplined approach to
neural network hyper-
parameters: Part 1 --
learning rate, batch size,
momentum, and weight
decay, Leslie N. Smith

Resources

Optimizer
Trajectory

Local
Minima

Cross-
Validation

&
Class

Imbalance

population sample

The Data Wrangling Process

36

cross-validation

train

test

Learn Model

Evaluate Model

Step 1. What is the population of interest? What sample S are we
evaluating, and is sample S representative of the population?

population sample

The Data Wrangling Process

37

cross-validation

train

test

Learn Model

Evaluate Model

Step 2. How do we cross-validate to evaluate our
model? How do we avoid overfitting and data mining?

Data Wrangling

Cross-Validation

(Hastie et al., 2011)

Data Wrangling

Cross-Validation Best Practices

1. Random search vs. Grid Search for Hyperparameters
(Bergstra and Bengio, 2012)

2. Confirm hyperparameter range is sufficient such as
plotting out-of-bag (OOB) error rate

3. Temporal cross-validation considerations
4. Check for overfitting

Data Wrangling

Class Imbalance

(Altenburger and Ho, under review 2020)

Data Wrangling

Class Imbalance

(Altenburger and Ho, under review 2020)

Data Wrangling

Object Detection
Region CNN (R-CNN) and Single Shot Detector (SSD) are
models that can localize and classify many objects in an
image

R-CNN: Girshick, SSD: Liu

Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely
sample many boxes of different sizes at different “anchor”
locations in the image

Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely
sample many boxes of different sizes at different “anchor”
locations in the image

Data Wrangling

Class Imbalance: Object Detection
Object detection models (ex: R-CNN and SSD) densely
sample many boxes of different sizes at different “anchor”
locations in the image

Data Wrangling

Class Imbalance: Object Detection
- Goal: Classify a proposal box into

foreground or background
- IoU: intersection over union
- A proposal box is assigned a ground

truth label of:
- Foreground, if IoU with ground

truth box > 0.5
- Background, otherwise

Data Wrangling

Class Imbalance: Object Detection
foreground boxes >>> # background boxes!

Data Wrangling

Class Imbalance: Focal Loss
Cross Entropy: easy examples incur a non-negligible loss,
which in aggregate mask out the harder, rare examples

Focal Loss: down-weights easy examples, to give more
attention to difficult examples

(Lin et al., 2017)

Data Wrangling

Class Imbalance: Focal Loss

(Lin et al., 2017)

Convolution
Layers

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Is this necessary?

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)

Image features are spatially
localized!

Smaller features repeated
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature
tends to appear in one location
vs. another (stationarity)

Locality of Features

Can we induce a bias in the
design of a neural network
layer to reflect this?

Each node only receives input from
𝟏 𝟐 window (image patch)

Region from which a node receives
input from is called its receptive
field

Advantages:

Reduce parameters to 𝟏 𝟐

where is number of output
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐

Nodes in different locations can share
features

No reason to think same feature
(e.g. edge pattern) can’t appear
elsewhere

Use same weights/parameters in
computation graph (shared
weights)

Advantages:

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏

We can learn many such features
for this one layer

Weights are not shared
across different feature
extractors

Parameters: 𝟏 𝟐

where is number of
features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical
operation on two functions f and g producing a
third function that is typically viewed as a
modified version of one of the original functions,
giving the area overlap between the two
functions as a function of the amount that one of
the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,
statistics, computer vision, image and signal
processing, electrical engineering, and
differential equations.

Visual comparison of convolution and
cross-correlation.

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D
Convolution

2D
Convolution

Notation:

𝒌 𝒏 𝒌ି𝒏

𝑵ି𝟏

𝒏ୀ𝟎

𝒚𝟎 = 𝒉𝟎 ȉ 𝒙𝟎

𝒚𝟏 = 𝒉𝟏 ȉ 𝒙𝟎 + 𝒉𝟎 ȉ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ȉ 𝒙𝟎 + 𝒉𝟏 ȉ 𝒙𝟏 + 𝒉𝟎 ȉ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ȉ 𝒙𝟎 + 𝒉𝟐 ȉ 𝒙𝟏 + 𝒉𝟏 ȉ 𝒙𝟐 + 𝒉𝟎 ȉ 𝒙𝟑

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride
along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾ି𝟏
𝟐

,

𝒃ୀି
𝑾ି𝟏

𝟐

𝑯ି𝟏
𝟐

,

𝒂ୀି
𝑯ି𝟏

𝟐

𝒌𝟐ି𝟏
𝟐

,

𝒃ୀି
𝒌𝟐ି𝟏

𝟐

𝒌𝟏ି𝟏
𝟐

,

𝒂ୀି
𝑲𝟏ି𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and
move back

Cross-correlation: Start in the beginning of
kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change
does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it’s a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

?

