CS 4650/7650 Fall 2020: Homework 5

October 21, 2020

Instructions

1. This homework has two parts: questions 1-4 are theory questions, and Q5 is a
programming assignment with some written components within a Jupyter Notebook.

We will be using Gradescope to collect your assignments. Please read the following
instructions for submitting to Gradescope carefully!

(a)

(b)

(©

Each subproblem must be submitted on a separate page. When submitting to
Gradescope (under), make sure to mark which page(s) correspond
to each problem or subproblem. For instance, Q2 has two subproblems, so the
solution to each must start on a new page.

For the coding problem (Q5), please upload ‘MyQA.py’ and ‘HW5.ipynb’ under
the assignment on Gradescope. Write your solutions for Q5
(a) and (b) in your writeup, and Attach a pdf export of ‘HW5.ipynb’, including
outputs, to your writeup.

Note: This is a large class and Gradescope’s assignment segmentation features
are essential. Failure to follow these instructions may result in parts of your
assignment not being graded. We will not entertain regrading requests for
failure to follow instructions.

. BIEX solutions are strongly encouraged (a solution template is available on the class

website), but scanned handwritten copies are also acceptable. Hard copies are not
accepted.

. We generally encourage collaboration with other students. You may discuss the

questions and potential directions for solving them with another student. However,
you need to write your own solutions and code separately, and not as a group activity.
Please list the students you collaborated with on the submission site.

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

Questions

1. By now you have extensive knowledge of constituency parsing, which represents
natural language sentences using a hierarchical tree structure which groups words
together into phrases. Another common representation of syntax in NLP is dependency
parsing, which overlays the sentence with a set of edges over the word nodes. In a
dependency graph (also called a dependency tree), there are no phrases, or nodes
which are not words, and syntactic hierarchy is determined by relating a head word
with an edge towards its dependent word, annotated with a syntactic relation. An
example is presented below. The submission template includes tikz-dependency
code for generating it, so you can draw your own trees in case you’re submitting the
assigment in BTEX.

Please read up on dependency syntax in Eisenstein’s textbook, chapter 11
until the end of section 11.1.

-

the cat ate candy .

(a) The following two sentences are syntactically ambiguous. Draw both possible
trees for each sentence. Refer to the documentation of relations in the following
url: https://universaldependencies.org/u/dep/. You're only going
to need the following: root, nsubj, compound, aux, amod, det, dobj, punct.
[8 points]

i. I saw the funny giraffe movie.

ii. We can fish.

20f9

https://universaldependencies.org/u/dep/

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

(b) Arecent version of the Universal Dependencies treebank project has changed the
convention for preposition phrases: instead of the preposition being a prep
dependent of the parent and the pobj head of the subordinate, it is now the
prep dependent of the subordinate, which is a pobj dependent of the parent.
Eisenstein gives an example (scratch with claws) in §11.1.1.

Is this change expected to change the average depth of trees (calculated as the
length of the longest path from root to leaf) in English treebanks? If so, in
which direction? [2 points]

(c) A projective parse tree is one in which no edges cross when drawn on a plane
above the text. Think of a sentence in English whose parse tree is not projective.
Draw the tree. [Bonus 5 points]

30f9

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

2. Open-domain Question Answering aims to find the answers to questions expressed

in natural language from a large collection of documents.

Traditional methods for Open-domain Question Answering are composed of two
stages. In the first stage, a Document Retriever retrieves articles that are likely to be
relevant to the question as candidate documents. In the second stage, a Document
Reader predicts a text span in the candidate documents as the final answer.

(a) Inthe Document Reader, we consider candidate documents as a large paragraph

(b)

composed of N words {w;, ws, --- ,wy}. We use a paragraph encoder to encode
all words in the paragraph into vectors: {p1, ps,- - - , pn }- We alsouse a question
encoder to encode the question into a vector q. Finally, we compute the probabilities
of each token in the paragraph being start and end of the correct span: Py, (i) =

piwsq: Pend(i) = piweq'

i. In the paragraph encoder, the basic input are word embeddings. Besides
word embeddings, we want to design a binary feature as additional input
for each word. What would you choose as a binary feature to improve the
performance most. [2 pt]

ii. Suppose parts of p; is constructed from aligned question embedding. Assume
we have a column vector to represent the word “America” in the paragraph:
e € R% We have a matrix composed of three vectors to represent the
question “Where is Seattle”: Q € R3*9, f(.) denotes a softmax layer. Use
dot-product attention mechanism to calculate the aligned question embedding
for the word “America”. Your answer should be in terms of {Q,e, f(-)} [3
points].

In the Document Retriever, articles and questions are compared as TF-IDF weighted
bag-of-word vectors in order to return the £ most relevant articles. But such
term-based sparse representations have limited capabilities in matching questions
and passages, e.g., there could be many relevant articles where there is no exact
term match.

Instead, we want a model to learn to retrieve documents. Suppose we have

a large collection of documents {z1, z5,--- , z)s}. We use a model to compute
p(zi|x), where z is the question. Document Reader can compute the probability

of answer a: p(alz, z). To train Document Retriever and Document Reader
jointly, we maximize the probability p(a|x).

i. Write down the probability p(a|z) in terms of p(z;|z) and p(a|z, z;). [2 points]
ii. Computing p(a|x) exactly in such formula is very time-consuming. Explain
why [1 point], and propose a solution to approximate p(a|x) [2 points].

4 0of 9

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

3. (a) TheBiLingual Evaluation Understudy (BLEU) is a method for automatic evaluation
of machine translation that is quick, inexpensive and language-independent,
and correlates highly with human evaluation.

The formal definition of BLEU is
N

BLEU = BP - exp (3wy logpn).
n=1
where
BP — 1 ifc > r,.
exp(l —r/c) otherwise.

p, represents the n-gram precision, associated with its positive weight w,,.

c is the length of the candidate translation and r is the length of the reference
translation.

Suppose there are a reference translation and a candidate translation:

i. reference: “Tom likes to study natural language processing at night”;

ii. candidate: “Tom loves to study language processing at night”.

Assume N =4 and w; = wy = w3 = wy = 1.

Compute py, p2, p3, P4, and then compute BP and BLEU. [6 points]
(b) Suppose you are given a set of sentence pairs

(e,f) = { ([‘the’, ‘house’], [‘das’, ‘haus’]),
([‘the’, ‘book’], [‘das’, ‘buch’]),
([, ‘book’], [‘ein’, ‘buch’]) }

Use IBM Model 1 to compute the translation probabilities. The translation
probabilities ¢(e| f) are initialized as the column “initial” in Table 1.

| e | f [initial | Istit. | 2nd it. |
the das 0.3
book | das 0.3
house | das 0.3
the | buch 0.3
book | buch 0.3
a buch 0.3
book | ein 0.4 0.5 | 0.4222
a ein 0.4 0.5 | 0.5778
the | haus 0.4 0.5 |0.4222
house | haus 0.4 0.5 |0.5778

Table 1: Translation probabilities ¢(e| f).

Fill in all the blanks in Table 1. Please show the intermediate steps of your
calculation as well. [9 points]

50f9

Homework 5 CS 4650/7650

Deadline: November 4, 3:29pm ET Natural Language
h; / p; a | soccer | game | with | multiple | men | playing
some 0.1 0.2 0.2 0.1 08| 04 0.1
men 0.2 0.4 0.3 0.2 0.1 1 0.2
are 0.2 0.2 04| 0.2 0.3 0.8 0.7
playing 0.1 0.5 0.6 0.2 04| 0.3 1
a 1 0.2 0.2 0.1 0.2 0.3 0.2
sport 0.1 0.9 0.7 0.1 0.2 0.3 0.5
few 0.5 0.1 0.2 0.3 0.3 0.2 0.1
people 0.2 0.3 0.2 0.1 0.5 0.7 0.4
basketball | 0.1 0.5 0.6 0.2 0.2 04 0.7

Table 2: Lexical scores for ordered word pairs- P(h;|p;).

4. Natural language inference (NLI) is the problem of determining whether a natural
language hypothesis 4 can reasonably be inferred from a natural language premise
p. This task is also referred to as Recognizing Textual Entailment (RTE) and we say
that p entails £ if, typically, a human reading p would infer that 7 is most likely true.
The task is usually defined with labels {entails, contradicts, neutral}. Let us look at
a few examples:

p: The flight crash landed into the Atlantic Ocean.

hi: The flight’s journey was not successful. (ENTAILS)

ho: There has been an increase in crash landings lately. (NEUTRAL)
hs: A flight crash landed into the Indian Ocean. (CONTRADICTYS)

(a)

(b)

Avery simple approach to the NLI task is with a bag-of-words entailment model.
Let P(h|p) denote the probability that a premise p supports an inference to a
hypothesis h. This probability is decomposed to independently account for the
probability that each individual word %; € h is entailed by p. Assuming that
each word h; € h derives its support mainly from a single word in p, P(h;|p) can
be identified with the max over the probability of its support by the individual
words p; € p.

P(hlp) = 1] P(hslp) =]] max P(hslpi)

Use table 2 to find values of P(h;|p;) and find the probabilities that hypotheses
hi, and h, are entailed by premise p. [4 points]

p: a soccer game with multiple men playing
hy: some men are playing a sport
ho: a few people are playing basketball

The most crucial part of the simple model above is the lexical scoring function
P(hj|p;) which maps ordered pairs of words (%, p;) to real values in the interval

60of 9

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

[0,1]. Mention one choice of scoring function that can be used for this task. [2
points]

(c) A robust NLI system can be used for several applications. One example of this
is for evaluating Machine Translation, where a candidate translation x can be
compared with a ground truth y translation to check for semantic equivalence
(z entails y and y entails). Mention and describe another application where
NLI can be used. [2 points]

(d) Describe in brief how a neural network technique can be used for the NLI task.
[2 points]

7 of 9

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

5. Inthis assignment, you will implement a slight variant of the Bi-Directional Attention
Flow For Machine Comprehension or BiDAF method. You should refer to the original
paper as your implement the methods. We will learn the BiDAF on The Stanford
Question Answering Dataset or SOuAD 2.0. The dataset is composed question-answer
pairs that pertain to a particular passage from a Wikipedia article. Every passage has
several questions, and each question has several answers. Furthermore, each answer
is also annotated with its start position in the passage. We will be using answer’s
start and end position as labels to provide supervision. Feel free to explore and
familiarize yourself with the data and check out Background, Challenges, Progress to
learn more.

You will write your code in HW5 . ipynb and MyQA . py. “MyQA . py” should be submitted
to ; make sure the file doesn’t use or import any packages not
included in the requirements. txt file. You can download the HW5 package from
the course website. Furthermore, HW5 . ipynb should be converted to PDF and attached
at the end of your written report and submitted to

We have already downloaded and preprocessed all SQUAD data for you and they
are in the .pickle files in the HW5 folder you downloaded from course website.
The purpose of this assignment is not to build state-of-the-art question answering
system. You can probably do that by fine-tuning a pretrained model (which you can
do for Bonus in part d). For parts a and b, your main goal is to build and partially train
BiDAF in PyTorch directly from the original paper. Don’t worry, we have provided
plenty of structured code to help guide you through.

(a) For this part implement the Encoder for our BiDAF model. This will look very
similar to the POSTagger code you wrote in HW4. Instead of encoding characters
using a CNN, like they do in the Seo et. al (2017), we will just use another
LSTM for simplicity. We will also ignore the “Highway Network” used in Seo
et. al (2017) for simplicity. However, these are the only two deviations from
the original paper. The rest of the architecture will stay the same. Implement
the LSTMEncoder in MyQA.py and test whether the output dimensions are
correct by running the notebook cell in Part 1: Encoder. Your implementation
should work correctly with various hyperparameters, this will be tested by the
autograder. What are some pros and cons of using LSTM to incorporate character
information as opposed to CNN as done by original authors? What is the purpose
of the Highway Network that was used by the authors? [6 points code + 4 points
written]

(b) Next, implement the Attention Flow Layer of the network. More guidance is
provided in the python file. You may also need to refer to the original paper to
better understand the approach. Check your work with the appropriate notebook
cell. Reflect on the pros and cons of this approach. [10 points code + 5 points
written]

(c) Finally,implement the rest of the modules: Model ingLayer, OutputLayer
and BiDAF. Once you have verified that the implementation using checks provided
in the notebook, implement items in the notebook under “2. Implement Training

8of 9

https://arxiv.org/abs/1611.01603
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/mlx/qa-and-squad/

Homework 5 CS 4650/7650
Deadline: November 4, 3:29pm ET Natural Language

(d)

and Eval” section. You do not need to train the network for optimal accuracy,
however, you should run the train and eval for about 2 epochs to verify that
your implementation works. Please also modify the hyperparameters so that
your loss is decreasing. Make sure that that outputs are preserved when you
attach PDF of your notebook in your write-up. Finally, feel free to modify other
functions in the notebook (such as get_eval _scores) or add new ones for
your convenience. Please explain what hyperparameters you modified and
how it influences the loss and F1 scores. [15 points]

Build any network and submit to SQUAD 2.0 to earn extra credit. The full
SQuAD 2.0 data and instructions on submission can be found here. You can
obtain a pretrained network like BERT and fine-tune on SQuAD as discussed in
lecture or train one from scratch. You could even try out some feature based
methods or knowledge based methods discussed in class. Whichever approach
you use, you must submit all the code files in separate folder to gradescope,
explain your approach in the write-up, attach a screenshot of your submission
to SQuUAD and your performance on their test set. You do not need to upload
any model or data files. Your performance must be above 75% to get the full
15 points. However, you can still get partial bonus if you submit to SQuAD and
submit everything you worked on. [BONUS 15 points]

90of 9

https://rajpurkar.github.io/SQuAD-explorer/

