Topics:

Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 2

- Implement convolutional neural networks
- Resources (in addition to lectures):
 - DL book: Convolutional Networks
 - CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
 - Backprop notes
 <u>https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf</u>
 - HW2 Tutorial @190, Conv backward @192, OMSCS versions @191
 - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• FB/Meta Office hours Friday 02/17 2pm EST!

- Pytorch & scalable training
- Module 2, Lesson 8 (M2L8), on dropbox

 $y(0,0) = x(-2,-2)k(2,2) + x(-2,-1)k(2,1) + x(-2,0)k(2,0) + x(-2,1)k(2,-1) + x(-2,2)k(2,-2) + \dots$

Mathematics of Discrete 2D Convolution

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

Since we will be learning these kernels, this change does not matter!

$$X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \longrightarrow X(0:2,0:2) \cdot K' = 65 + \text{bias}$$

Dot product (element-wise multiply and sum)

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

• Example: $k_1 = 3, k_2 = 3, N = 4$ input channels = 3, then (3 * 3 * 3 + 1) * 4 = 112

Need to incorporate all upstream gradients:

Chain Rule:

H - 1 W - 1

$$\frac{\partial y(r,c)}{\partial k(a,b)} =?$$

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
- When at pixel y(r, c), kernel is on input x such that k(0, 0) is multiplied by x(r, c)
- But we want derivative w.r.t. k(a, b)
 - $k(0,0) * x(r,c), k(1,1) * x(r+1,c+1), k(2,2) * x(r+2,c+2) \Rightarrow$ in general k(a,b) * x(r+a,c+b)
 - Just like before in fully connected layer, partial derivative w.r.t. k(a, b) only has this term (other x terms go away because not multiplied by k(a, b)).

Chain Rule over all Output Pixels

Georg a Tech

$$\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$$

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)

This is where the corresponding locations are for the **output**

 $k_2 = 3$

Chain rule for affected pixels (sum gradients):

Chain rule for affected pixels (sum gradients):

Chain rule for affected pixels (sum gradients):

Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! **Does this look familiar?**

Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history)
 - Can connect to convolutions via duality (flipping kernel)
 - Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
 - Forward: Cross-correlation
 - Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
 - Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
 - In practice implement via cross-correlation and flipped kernel
- All operations still implemented via **efficient linear algebra** (e.g. matrixmatrix multiplication)

Summary

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?
- Yes! We call one class of these operations pooling operations

Parameters

- kernel_size the size of the window to take a max over
- stride the stride of the window. Default value is kernel_size
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2J

Not restricted to max; can use any differentiable function

Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer

This combination adds some **invariance** to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the same translation

Simple Convolutional Neural Networks

Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer

These architectures have existed **since 1980s**

Image Credit: Yann LeCun, Kevin Murphy

Handwriting Recognition

Image Credit: Yann LeCun Georgia Tech

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit: Yann LeCun Georgia Tech

(Some) Rotation Invariance

Image Credit: Yann LeCun Georgia

(Some) Scale Invariance

Image Credit: Yann LeCun Georgia

Advanced Convolutional Networks

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

Full (simplified) AlexNet architecture: [224k224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [4096] FC7: 4096 neurons

Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

AlexNet – Layers and Key Aspects

(not counting biggor)	ConvNet Configuration						
INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (100 counting blases)	A	A-LRN	В	C	D	Е	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
CONV3-64; [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36.864	layers	layers	layers	layers	layers	layers	
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	input (224×224 RGB image)						
CONV3-128: [112x112x128], memory: 112*112*128=1.6M, params: (3*3*64)*128 = 73.728	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
CONV3 128: [112x112x128] memory: 112*112*128=1.6M parame: (3*3*128)*128 = 147.456	s	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
POOL2. [30x30x128] memory. 36 36 128-400K params. 0	convo 120	conv5 120	conv3-128	conv3-128	conv3-128	conv3-128	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	maxpool						
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
POOL2: [28x28x256] memory: 28*28*256=200K params: 0				conv1-256	conv3-256	conv3-256	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648	maxpool						
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2.359.296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2.359.296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
POOL 2: [147147512] memory: 14*14*512=100K parame: 0				conv1-512	conv3-512	conv3-512	
CONU2 512: [14/14/2012] memory 14/14/512 = 10/2 = 10/2 = 2 250 206			may	nool		conv5-512	
CONV3-512: [14x14x512] memory. 14 14 512=100K params. (3 3 512) 512 = 2,359,296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296				conv1-512	conv3-512	conv3-512	
POOL2: [7x7x512] memory: 7*7*512=25K params: 0						conv3-512	
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	EC 4006						
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	FC-4090						
EC: [1x1x1000] memory: 1000 params: 4096*1000 = 4.096.000	FC-1000						
restlikikiesel meneli. Here paramet here here allese			soft-	max		î	
	-						
	Table 2: Number of parameters (in millions).						
	Network A,A-LRN B C D E						
	Nut	nber of param	eters 13.	3 133	134 138	144	

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

(not counting biases) memory: 224*224*3=150K params: 0 INPUT: [224x224x3] CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096.000

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

ConvNet Configuration											
A	A-LRN	B		С	D		E				
11 weigh	t 11 weight	13 weight	16	weight	16 we	ight	19 weight				
layers	layers	layers	la	ayers	laye	rs	layers				
input (224×224 RGB image)											
conv3-64	conv3-64	conv3-64	COI	w3-64	conv3	-64	conv3-64				
	LRN	conv3-64	C01	iv3-64	conv3	-64	conv3-64				
maxpool											
conv3-12	8 conv3-128	conv3-128	con	v3-128	conv3-	-128	conv3-128				
		conv3-128	con	v3-128	conv3-	-128	conv3-128				
maxpool											
conv3-25	6 conv3-256	conv3-256	con	v3-256	conv3-256		conv3-256				
conv3-25	6 conv3-256	conv3-256	i con	v3-256	conv3-256		conv3-256				
			con	v1-256	conv3	-256	conv3-256				
			0				conv3-256				
maxpool											
conv3-51	2 conv3-512	conv3-512	con	v3-512	conv3-	-512	conv3-512				
conv3-51	2 conv3-512	conv3-512	con	v3-512	conv3-	-512	conv3-512				
			con	v1-512	conv3	-512	conv3-512				
							conv3-512				
		m	axpool		~						
conv3-51	2 conv3-512	conv3-512	con	v3-512	conv3-	-512	conv3-512				
conv3-51	2 conv3-512	conv3-512	con	v3-512	conv3-512		conv3-512				
			con	v1-512	conv3-512		conv3-512				
			0				conv3-512				
		m	axpool								
		FO	C-4096				8				
		FO	C -4 096				8				
FC-1000											
soft-max											
Table 2: Number of parameters (in millions).											
N	letwork	A.A	-LRN	В	C	D	E				
Number of parameters 133 133 134 138 144						144					

Key aspects:

Repeated application of:

- 3x3 conv (stride of 1, padding of 1)
- 2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r/

VGG – Key Characteristics

But have become **deeper and more complex**

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks

Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity

0

Geo

From: An Analysis Of Deep Neural Network Models For Practical Application