
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Convolutional Neural Networks

Administrivia

• Assignment 2
• Implement convolutional neural networks
• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial @190, Conv backward @192, OMSCS versions @191
• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)

(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• FB/Meta Office hours Friday 02/17 2pm EST!
• Pytorch & scalable training
• Module 2, Lesson 8 (M2L8), on dropbox

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾ି𝟏
𝟐

,

𝒃ୀି
𝑾ି𝟏

𝟐

𝑯ି𝟏
𝟐

,

𝒂ୀି
𝑯ି𝟏

𝟐

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change
does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example:

𝟏 𝟐 , then

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage

Chain Rule over all Output Pixels

Need to incorporate all upstream
gradients:

Chain Rule:
𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over
all output

pixels

Upstream
gradient
(known)

We will
compute

Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

?

Reasoning:
• Cross-correlation is just “dot product” of kernel and input patch (weighted sum)
• When at pixel 𝒚 𝒓, 𝒄 , kernel is on input x such that 𝒌 𝟎, 𝟎 is multiplied by x 𝒓, 𝒄
• But we want derivative w.r.t. 𝒌 𝒂, 𝒃

• 𝒌 𝟎, 𝟎 ∗ 𝒙(𝒓, 𝒄), 𝒌 𝟏, 𝟏 ∗ 𝒙(𝒓 + 𝟏, 𝒄 + 𝟏), 𝒌 𝟐, 𝟐 ∗ 𝒙 𝒓 + 𝟐, 𝒄 + 𝟐 => in
general 𝒌 𝒂, 𝒃 ∗ 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

• Just like before in fully connected layer, partial derivative w.r.t. 𝒌 𝒂, 𝒃 only
has this term (other x terms go away because not multiplied by 𝒌 𝒂, 𝒃).

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar?

Cross-correlation
between upstream
gradient and input!

(until 𝟏 𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

r+a,
c+b

Forward and Backward Duality

…

Does this look familiar?

Cross-correlation
between upstream
gradient and input!

(until 𝟏 𝟐 output)
𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c
r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c
r,c

a,b

a,b

What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel
affect at the output?

Neighborhood around it
(where part of the kernel
touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

r’,c’

Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4
This is where the
corresponding locations
are for the output

(𝒓ᇱ − 𝒌𝟏 + 𝟏,
𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Summing Gradient Contributions

ᇱ

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎
ᇱ

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓 r’,c’

1 2

3 4

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

 𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ ?

Summing Gradient Contributions

ᇱ

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎
ᇱ

Chain rule for affected pixels (sum gradients):
 𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ 𝒚 𝒓′ − 𝟏, 𝒄′ − 𝟏
…
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝒂, 𝒃 ⇒ 𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

ᇱ

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

Let’s derive it
analytically this time (as
opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Backwards is Convolution

Plugging in to earlier equation:

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Does this look familiar?

Convolution between
upstream gradient and
kernel!

(can implement by
flipping kernel and
cross- correlation)

Again, all operations can be
implemented via matrix
multiplications (same as FC layer)!

Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called
convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)
• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:
• Forward: Cross-correlation
• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-
matrix multiplication)

Pooling
Layers

Pooling Layers

Dimensionality reduction
is an important aspect of
machine learning

Can we make a layer to
explicitly down-sample
image or feature maps?

Yes! We call one class of
these operations pooling
operations

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑯
=

𝟓

How many learned
parameters does
this layer have?

None!

Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑯
=

𝟓

𝒋

𝒊

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling
Layer

𝑯
=

𝟓

Invariance

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still
remain the same

Image
Convolution

Layer
Pooling
Layer

𝑯
=

𝟓

Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the
same translation

𝑯
=

𝟓

Simple
Convolutional

Neural
Networks

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling
Layer

𝑯
=

𝟓

Alternating Convolution and Pooling

Image
Convolution +

Non-Linear
Layer

Pooling
Layer

Convolution +
Non-Linear

Layer

Useful,
lower-
dimensional
features

Convolutional Neural Networks (CNNs)

Adding a Fully Connected Layer

Image Pooling
Layer

Fully
Connected

Layers

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Loss

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Receptive Fields

Image Pooling
Layer

Fully
Connected

Layers

Loss

Typical Depiction of CNNs

Input
Image

PredictionsCNN

Convolutional Neural
Networks

Input
Image

Predictions

LeNet Architecture

These architectures have existed since 1980s

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy

Handwriting Recognition

Image Credit:
Yann LeCun

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:
Yann LeCun

(Some) Rotation Invariance

Image Credit:
Yann LeCun

(Some) Scale Invariance

Image Credit:
Yann LeCun

Advanced
Convolutional

Networks

From: https://paperswithcode.com

The Importance of Benchmarks

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling

VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Parameters and Memory

Most memory usage in
convolution layers

Most parameters in FC
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGG – Key Characteristics

Key aspects:

Repeated application of:

3x3 conv (stride of 1, padding
of 1)

2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter
concatenation

1x1
convolutions

3x3
convolutions

5x5
convolutions

3x3 max
pooling

Previous layer

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition

Key idea: Allow information from a layer to propagate
to any future layer (forward)

Same is true for gradients!

weight layer

weight layer

+
relu

relu

identity

Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Several ways to learn
architectures:

Evolutionary learning
and reinforcement
learning

Prune over-
parameterized
networks

Learning of
repeated blocks
typical

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications

