Topics:

• Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

Assignment 2

- Implement convolutional neural networks
- Resources (in addition to lectures):
	- DL book: Convolutional Networks
	- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
	- Backprop notes https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
	-
- **Signment 2**

Implement convolutional neural networks

Resources (in addition to lectures):

 <u>DL book: Convolutional Networks</u>

 CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cms notes.pdf
 • Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) • Implement convolutional neural networks

• Resources (in addition to lectures):

• <u>DL book: Convolutional Networks</u>

• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring

• Backprop notes

https://www.cc.g • Resources (in addition to lectures):

• <u>DL book: Convolutional Networks</u>

• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cns backpro

• Backprop notes

• HW**2 Tutorial @190, Conv backward**

• FB/Meta Office hours Friday 02/17 2pm EST!

-
-

Mathematics of Discrete 2D Convolution

$$
y(r,c) = (x * k)(r, c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r + a, c + b) k(a, b)
$$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad X(0:2,0:2) \cdot K' = 65 + bias
$$

Dot product
(element-wise multiply and sum)

Dot product (element-wise multiply and sum)

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Example:
 $k_1 = 3, k_2 = 3, N = 4$ *input channels* = 3, then $(3 * 3 * 3 + 1) * 4 = 1$ Example: $k_1 = 3, k_2 = 3, N = 4$ input channels = 3, then $(3 * 3 * 3 + 1) * 4 = 112$

Need to incorporate all upstream gradients:

Chain Rule:

 $W-1$ as a subset of \sim

 $H-1 W-1$

$$
\frac{\partial y(r,c)}{\partial k(a,b)} =
$$

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
-
- -
- $\frac{\partial y(r, c)}{\partial k(a, b)}$ = ?
 Reasoning:

 Consected the start of the start derivative w.r.t. $k(a, b)$ **

 W**

Chain Rule over all Output Pixels

$$
\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)
$$

$$
\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a, c+b)
$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)

$$
k_1 = 3
$$

$$
k_2=3
$$

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

Chain rule for affected pixels (sum gradients):

Chain rule for affected pixels (sum gradients):

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}
$$

$$
= \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a, c'-b)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Does this look familiar?

Convolution between upstream gradient and kernel! **Does this look familiar?**
Convolution between
upstream gradient and
kernel!
(can implement by
flipping kernel and
cross- correlation)
 $\frac{1}{2}$

(can implement by flipping kernel and

-
- Convolutions are mathematical descriptions of striding linear operation
• In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history) • Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement **cross-correlation neural networks!** (still called

convolutional neural networks due to history)

• Can connect to con convolutional neural networks due to history) onvolutions are mathematical descriptions of striding linear operation
• practice, we implement **cross-correlation neural networks!** (still call
• Can connect to convolutions via duality (flipping kernel)
• Convolution for onvolutions are mathematical descriptions of striding linear operation
• practice, we implement **cross-correlation neural networks!** (still called
onvolutional neural networks due to history)
• Can connect to convolutions • Convolutions are mathematical descriptions of

• In practice, we implement **cross-correlation r**

convolutional neural networks due to history)

• Can connect to convolutions via duality (fli

• Convolution formulation h • Backwards w.r.t. K: Cross-correlation by upstream gradient and the productional neural networks due to history
• Can connect to convolutions via duality (flipping kernel)
• Convolution formulation has mathematical proper valutions are mathematical descriptions of striding linear operation

ectice, we implement **cross-correlation neural networks!** (still called

lutional neural networks due to history)

an connect to convolutions via dualit
	-
	-
- - Forward: Cross-correlation
	-
	- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
		-
- In practice, we implement cross-correlation neural networks! (still cal

convolutional neural networks due to history)

 Can connect to convolutions via duality (flipping kernel)

 Convolution formulation has mathemati matrix multiplication)

Summary

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?
- **Yes!** We call one class of these operations pooling

these of the window to take a max over

stride - the stride of the window. Default value is kernel_size operations

Parameters

-
-
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Not restricted to max; can use any differentiable function

Since the **output** of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

This combination adds some **invariance** to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the same translation

Simple **Convolutional Neural Networks**

Since the **output** of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

These architectures have existed since 1980s

Handwriting Recognition

Image Credit: Yann LeCun $\overline{\mathcal{O}}$ \Rightarrow Georgia

Image Credit: Yann LeCunGeo

(Some) Rotation Invariance

Image Credit: Yann LeCun \Rightarrow Geor

(Some) Scale Invariance

Image Credit: Yann LeCun╱ \Rightarrow Geor

Advanced Convolutional **Networks**

Full (simplified) AlexNet architecture: [224k224k3] INPUT 11x11 filters at stride 4, pad 2

mail: 3x3 filters at stride 1, pad 2
 $\frac{2.3 \times 3$ filters at stride 1, pad 2

Sinces at stride 1, pad 2

Sinces at stride 1, pad 1

4.3x3 filters at stride 1, pad 1

4.3x3 filters at stri

Key aspects:

-
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- **Ensembling**

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 memory. 11271212254. Fally params: (3°3142)128-1*47,46*

memory. 11271121224-1.6M params: (3°31128)128-147,466

memory. Sefect226-400K params: (3°3128)128-147,466

memory. Sefect28-600K params: (3°3128)1286-589,824

memory

Most memory usage in convolution layers

Most parameters in FC layers

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

Repeated application of:

- of 1)
- 2x2 max pooling (stride 2)

Very large number of parameters

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

But have become deeper and more complex

Inception Architecture

Key idea: Repeated blocks and multi-scale features

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to learn architectures:

- Evolutionary learning \int_{s}^{s} and reinforcement

learning

Prupe over learning
- Prune overparameterized networks and the set of \mathbb{R}^n

Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity

 \Rightarrow

Geo

From: An Analysis Of Deep Neural Network Models For Practical Applications