
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Convolutional Neural Networks



Administrivia

• Assignment 2
• Implement convolutional neural networks
• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial @190, Conv backward @192, OMSCS versions @191
• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 

(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• FB/Meta Office hours Friday 02/17 2pm EST!
• Pytorch & scalable training
• Module 2, Lesson 8 (M2L8), on dropbox



Mathematics of Discrete 2D Convolution
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Cross-Correlation
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Since we will be learning these kernels, this change 
does not matter!



Cross-Correlation

K’  =
1     0     − 1
2    0     − 2
1    0     − 1

X(0: 2,0: 2)  =
200  150     150
100     50     100
25     25       10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example: 

𝟏 𝟐 , then  
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Chain Rule over all Output Pixels

Need to incorporate all upstream 
gradients:

Chain Rule:
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We will 
compute



Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

?

Reasoning:
• Cross-correlation is just “dot product” of kernel and input patch (weighted sum)
• When at pixel 𝒚 𝒓, 𝒄 , kernel is on input x such that 𝒌 𝟎, 𝟎 is multiplied by x 𝒓, 𝒄
• But we want derivative w.r.t. 𝒌 𝒂, 𝒃

• 𝒌 𝟎, 𝟎 ∗ 𝒙(𝒓, 𝒄), 𝒌 𝟏, 𝟏 ∗ 𝒙(𝒓 + 𝟏, 𝒄 + 𝟏), 𝒌 𝟐, 𝟐 ∗ 𝒙 𝒓 + 𝟐, 𝒄 + 𝟐  => in 
general 𝒌 𝒂, 𝒃 ∗ 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

• Just like before in fully connected layer, partial derivative w.r.t. 𝒌 𝒂, 𝒃 only
has this term (other x terms go away because not multiplied by 𝒌 𝒂, 𝒃 ). 



Gradients and Cross-Correlation
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Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)
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Forward and Backward Duality

…

Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)
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What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 
affect at the output?

Neighborhood around it 
(where part of the kernel 
touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑
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Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4
This is where the 
corresponding locations 
are for the output

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 
𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Summing Gradient Contributions
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Chain rule for affected pixels (sum gradients):
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𝑯 = 𝟓 r’,c’
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 𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ ?



Summing Gradient Contributions

ᇱ

 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎
ᇱ

Chain rule for affected pixels (sum gradients):
 𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ 𝒚 𝒓′ − 𝟏, 𝒄′ − 𝟏
…
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝒂, 𝒃 ⇒ 𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
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Summing Gradient Contributions
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Let’s derive it 
analytically this time (as 
opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)
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3 4



Backwards is Convolution

Plugging in to earlier equation:
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Does this look familiar? 

Convolution between 
upstream gradient and 
kernel!

(can implement by 
flipping kernel and 
cross- correlation)

Again, all operations can be 
implemented via matrix 
multiplications (same as FC layer)!



Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called 
convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)
• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:
• Forward: Cross-correlation
• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-
matrix multiplication)



Pooling 
Layers



Pooling Layers

Dimensionality reduction 
is an important aspect of 
machine learning

Can we make a layer to 
explicitly down-sample
image or feature maps?

Yes! We call one class of 
these operations pooling
operations 

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d



Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑯
=

𝟓

How many learned 
parameters does 
this layer have?

None!



Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑯
=

𝟓

 

𝒋

 

𝒊



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Invariance 

This combination adds some invariance to translation of the features 

If feature (such as beak) translated a little bit, output values still 
remain the same

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the 
same translation

𝑯
=

𝟓



Simple 
Convolutional 

Neural 
Networks



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Alternating Convolution and Pooling

Image
Convolution +

Non-Linear
Layer

Pooling
Layer

Convolution +
Non-Linear

Layer

Useful, 
lower-
dimensional 
features

Convolutional Neural Networks (CNNs)



Adding a Fully Connected Layer

Image Pooling
Layer

Fully 
Connected 

Layers

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Loss



Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Receptive Fields

Image Pooling
Layer

Fully 
Connected 

Layers

Loss



Typical Depiction of CNNs 

Input
Image

PredictionsCNN

Convolutional Neural
Networks

Input
Image

Predictions



LeNet Architecture

These architectures have existed since 1980s

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



Handwriting Recognition

Image Credit:
Yann LeCun



Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:
Yann LeCun



(Some) Rotation Invariance

Image Credit:
Yann LeCun



(Some) Scale Invariance

Image Credit:
Yann LeCun



Advanced 
Convolutional 

Networks



From: https://paperswithcode.com

The Importance of Benchmarks



AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Parameters and Memory

Most memory usage in 
convolution layers

Most parameters in FC 
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



VGG – Key Characteristics

Key aspects:

Repeated application of: 

3x3 conv (stride of 1, padding 
of 1)

2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter
concatenation

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

3x3 max 
pooling

Previous layer



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition 

Key idea: Allow information from a layer to propagate 
to any future layer (forward)

Same is true for gradients! 

weight layer

weight layer

+
relu

relu

identity



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 
architectures:

Evolutionary learning 
and reinforcement 
learning

Prune over-
parameterized 
networks

Learning of 
repeated blocks
typical



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications


