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Topics:
• Generative Models
• Pixel CNN
• Variational Autoencoders



Administrivia

• Projects!
• Due May 1rd (May 3th with grace period)
• Cannot extend due to grade deadlines!

• Outline of rest of course:

W14: Apr 14 Variational Autoencoders •Tutorial on Variational Autoencoders

W15: Apr 19 Diffusion Models 

W15: Apr 21 Emerging trends, wrap-up. 



Introduction



Spectrum of Low-Labeled Learning

Supervised 
Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised 
Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 
density estimation, etc.

Less Labels



Unsupervised Learning

Density 
Estimation

Classification

Regression

Clustering

Dimensionality
Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) On simplex



What to Learn? 

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling Comparing/
Grouping

Representation 
Learning

Principal 
Component 

Analysis

Clustering
Density 

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥)

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥)

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the 
parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



PixelRNN & 
PixelCNN



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏



Modeling language as a sequence

next
word

history



Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over 
sequences of words.

next
wor
d

history

⬣ RNNs are a family of neural architectures for modeling sequences.



Factorized Models for Images

𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟐

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏



Factorized Models for Images

𝟏 𝟐 𝟏 𝟑 𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏

⬣ Training:

⬣ We can train similar to language models: 
Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides: 

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks



Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution 
as a convolution layer!

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by 
applying a mask, zeroing out “future” 
pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images



Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Variational
Autoencoders

(VAEs)



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Autoencoders

Encoder Decoder

Low dimensional embedding

Minimize the difference (with MSE)

Linear layers with reduced 
dimension or Conv-2d 
layers with stride

Linear layers with increasing 
dimension or Conv-2d layers 
with bilinear upsampling



Formalizing the Generative Model

What is this?
Hidden/Latent variables
Factors of variation that 

produce an image:
(digit, orientation, scale, etc.)

⬣ We cannot maximize this likelihood due to the integral

⬣ Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes



Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 
approximate optimization

⬣ Sample from simpler distribution



Learning to Sample

⬣ We would like to sample from using a neural network

⬣ Idea: 

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to 

Neural Network

Samples Samples



Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

Neural Network

Vector of 
Random 
Numbers

Generator



Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 
approximate optimization

⬣ Assume comes from simpler distribution (Normal)

⬣ We can also output parameters of a probability 
distribution!

⬣ Example: of Gaussian distribution

⬣ For multi-dimensional version output 
diagonal covariance

⬣ How can we maximize 
 

 

௫ ௫

Decoder



Variational Autoencoder: Encoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 
approximate optimization

⬣ Given an image, estimate 

⬣ Again, output parameters of a 
distribution

௭ ௭

X

Encoder



Putting Them Together

⬣ We can tie the encoder and decoder together into a probabilistic autoencoder

⬣ Given data ( ), estimate ௭ ௭ and sample from ௭ ௭

⬣ Given , estimate ௫ ௫ and sample from ௫ ௫

Encoder

௭ ௭

X

Decoder

௫ ௫



Maximizing Likelihood

⬣ How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log) 
data likelihood:

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



KL-Divergence

Aside: KL Divergence (distance measure for distributions), always >= 0



Definition of Expectation



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder

௭ ௭

X

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder

௭ ௭

X

Decoder

௫ ௫

Putting it all together: maximizing the 
likelihood lower bound

Sample from 𝒛 𝒛

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder

௭ ௭

X

Decoder

௫ ௫

Putting it all together: maximizing the 
likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Sample from 𝒙 𝒙

Maximize likelihood of 
original input being 
reconstructed



Reparameterization Trick: Problem

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Problem with respect to the 
VLB: updating 

⬣ : need to 
differentiate through the 
sampling process w.r.t 
(encoder is probabilistic)



Reparameterization Trick: Solution

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Solution: make the randomness 
independent of encoder output, 
making the encoder deterministic

⬣ Gaussian distribution example:

⬣ Previously: encoder output = 
random variable 

⬣ Now encoder output = 
distribution parameter [ ]

⬣



Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes

ଵ

ଶ



Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform 
approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions) 

⬣ Samples are often not as competitive as other methods (GANs, diffusion)

⬣ Latent features (learned in an unsupervised way!) often good for 
downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018



Generative 
Adversarial 
Networks
(GANs)



Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

Neural Network

Vector of 
Random 
Numbers

Generator



Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the 
network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated 
(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

Neural Network

Vector of 
Random 
Numbers

Generator Discriminator

Real or 
Fake?



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Mini-batch of 
real & fake data

Question: What loss functions can we use (for each network)? 

⬣ Generator: Update weights to improve 
realism of generated images

⬣ Discriminator: Update weights to better 
discriminate



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of 
real & fake data



Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis



Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris



Overall Summary

⬣ Several ways to learn generative models via deep learning

⬣ PixelRNN/CNN: 

⬣ Simple tractable densities we can model via a NN and optimize

⬣ Slow generation – limited scaling to large complex images

⬣ Generative Adversarial Networks (GANs): 

⬣ Pro: Amazing results across many image modalities

⬣ Con: Unstable/difficult training process, computationally heavy for good results

⬣ Con: Limited success for discrete distributions (language)

⬣ Con: Hard to evaluate (implicit model)

⬣ Variational Autoencoders: 

⬣ Pro: Principled mathematical formulation

⬣ Pro: Results in disentangled latent representations

⬣ Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018


