
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Generative Models
• Pixel CNN
• Variational Autoencoders

Administrivia

• Projects!
• Due May 1rd (May 3th with grace period)
• Cannot extend due to grade deadlines!

• Outline of rest of course:

W14: Apr 14 Variational Autoencoders •Tutorial on Variational Autoencoders

W15: Apr 19 Diffusion Models

W15: Apr 21 Emerging trends, wrap-up.

Introduction

Spectrum of Low-Labeled Learning

Supervised
Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised
Learning

⬣ Input: 𝑋

⬣ Learning
output: 𝑃 𝑥

⬣ Example: Clustering,
density estimation, etc.

Less Labels

Unsupervised Learning

Density
Estimation

Classification

Regression

Clustering

Dimensionality
Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) On simplex

What to Learn?

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling Comparing/
Grouping

Representation
Learning

Principal
Component

Analysis

Clustering
Density

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the
parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

PixelRNN &
PixelCNN

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏

Modeling language as a sequence

next
word

history

Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over
sequences of words.

next
wor
d

history

⬣ RNNs are a family of neural architectures for modeling sequences.

Factorized Models for Images

𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟐

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏

Factorized Models for Images

𝟏 𝟐 𝟏 𝟑 𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏

⬣ Training:

⬣ We can train similar to language models:
Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides:

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution
as a convolution layer!

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by
applying a mask, zeroing out “future”
pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images

Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Variational
Autoencoders

(VAEs)

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Autoencoders

Encoder Decoder

Low dimensional embedding

Minimize the difference (with MSE)

Linear layers with reduced
dimension or Conv-2d
layers with stride

Linear layers with increasing
dimension or Conv-2d layers
with bilinear upsampling

Formalizing the Generative Model

What is this?
Hidden/Latent variables
Factors of variation that

produce an image:
(digit, orientation, scale, etc.)

⬣ We cannot maximize this likelihood due to the integral

⬣ Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

⬣ Sample from simpler distribution

Learning to Sample

⬣ We would like to sample from using a neural network

⬣ Idea:

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to

Neural Network

Samples Samples

Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

Neural Network

Vector of
Random
Numbers

Generator

Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

⬣ Assume comes from simpler distribution (Normal)

⬣ We can also output parameters of a probability
distribution!

⬣ Example: of Gaussian distribution

⬣ For multi-dimensional version output
diagonal covariance

⬣ How can we maximize

௫ ௫

Decoder

Variational Autoencoder: Encoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

⬣ Given an image, estimate

⬣ Again, output parameters of a
distribution

௭ ௭

X

Encoder

Putting Them Together

⬣ We can tie the encoder and decoder together into a probabilistic autoencoder

⬣ Given data (), estimate ௭ ௭ and sample from ௭ ௭

⬣ Given , estimate ௫ ௫ and sample from ௫ ௫

Encoder

௭ ௭

X

Decoder

௫ ௫

Maximizing Likelihood

⬣ How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log)
data likelihood:

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

KL-Divergence

Aside: KL Divergence (distance measure for distributions), always >= 0

Definition of Expectation

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder

௭ ௭

X

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder

௭ ௭

X

Decoder

௫ ௫

Putting it all together: maximizing the
likelihood lower bound

Sample from 𝒛 𝒛

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder

௭ ௭

X

Decoder

௫ ௫

Putting it all together: maximizing the
likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Sample from 𝒙 𝒙

Maximize likelihood of
original input being
reconstructed

Reparameterization Trick: Problem

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Problem with respect to the
VLB: updating

⬣ : need to
differentiate through the
sampling process w.r.t
(encoder is probabilistic)

Reparameterization Trick: Solution

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Solution: make the randomness
independent of encoder output,
making the encoder deterministic

⬣ Gaussian distribution example:

⬣ Previously: encoder output =
random variable

⬣ Now encoder output =
distribution parameter []

⬣

Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes

ଵ

ଶ

Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform
approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions)

⬣ Samples are often not as competitive as other methods (GANs, diffusion)

⬣ Latent features (learned in an unsupervised way!) often good for
downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

Generative
Adversarial
Networks
(GANs)

Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

Neural Network

Vector of
Random
Numbers

Generator

Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated
(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

Neural Network

Vector of
Random
Numbers

Generator Discriminator

Real or
Fake?

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Mini-batch of
real & fake data

Question: What loss functions can we use (for each network)?

⬣ Generator: Update weights to improve
realism of generated images

⬣ Discriminator: Update weights to better
discriminate

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of
real & fake data

Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris

Overall Summary

⬣ Several ways to learn generative models via deep learning

⬣ PixelRNN/CNN:

⬣ Simple tractable densities we can model via a NN and optimize

⬣ Slow generation – limited scaling to large complex images

⬣ Generative Adversarial Networks (GANs):

⬣ Pro: Amazing results across many image modalities

⬣ Con: Unstable/difficult training process, computationally heavy for good results

⬣ Con: Limited success for discrete distributions (language)

⬣ Con: Hard to evaluate (implicit model)

⬣ Variational Autoencoders:

⬣ Pro: Principled mathematical formulation

⬣ Pro: Results in disentangled latent representations

⬣ Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018

