Topics:

- Machine learning intro, applications (CV, NLP, etc.)
- Parametric models and their components

CS 4644 / 7643-A ZSOLT KIRA

Machine Learning Applications

• What's up with the capacity/waitlist?

• PSO due Sunday night!

- Please do it!
- We have fixed some gradescope autograder issues (sorry!)
- **Piazza**: not all enrolled!
 - Enroll now! <u>https://piazza.com/gatech/spring2023/cs46447643/home</u> (Code: DLSPR23 or through canvas)
 - Note: Do NOT post anything containing solutions publicly!
 - Make it active!
- Office hours start next week

Collaboration

- Only on HWs and project (not allowed in HW0/PS0).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Do NOT search for code implementing what we ask; search for concepts
- Each student must write their own code/proofs

Zero tolerance on plagiarism

- Neither ethical nor in your best interest
- Always credit your sources
- Don't cheat. We will find out.

• Grace period

- 2 days grace period for each assignment (**EXCEPT PSO**)
 - Intended for checking submission NOT to replace due date
 - No need to ask for grace, no penalty for turning it in within grace period
 - Can NOT use for PS0
- After grace period, you get a 0 (no excuses except medical)
 - Send all medical requests to dean of students (https://studentlife.gatech.edu/)
 - Form: <u>https://gatech-advocate.symplicity.com/care_report/index.php/pid224342</u>
- **DO NOT SEND US ANY MEDICAL INFORMATION!** We do not need any details, just a confirmation from dean of students

CS231n Convolutional Neural Networks for Visual Recognition

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

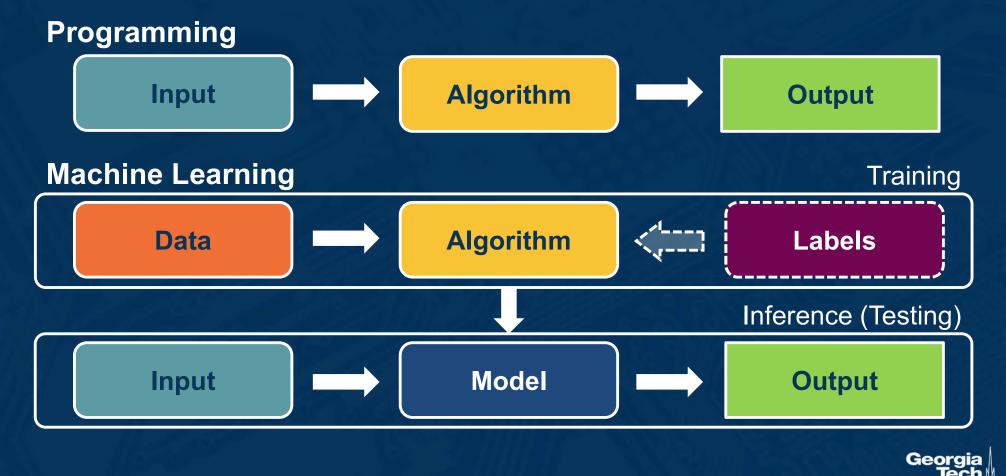
Machine Learning Overview

What is Machine Learning (ML)?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell (Machine Learning, 1997)

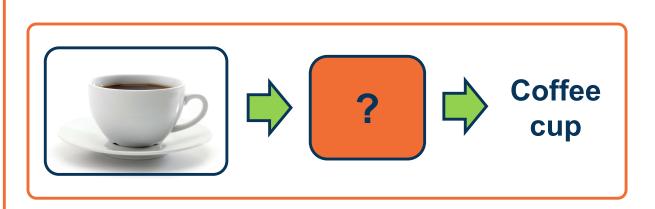
How is it Different than Programming?



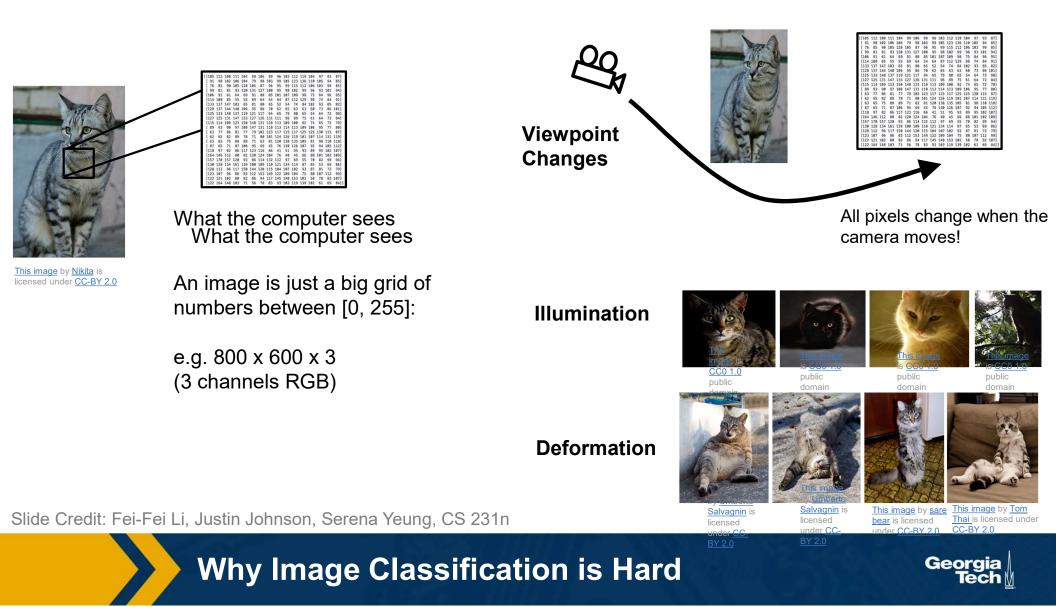
Machine learning thrives when it is **difficult to design an algorithm** to perform the task

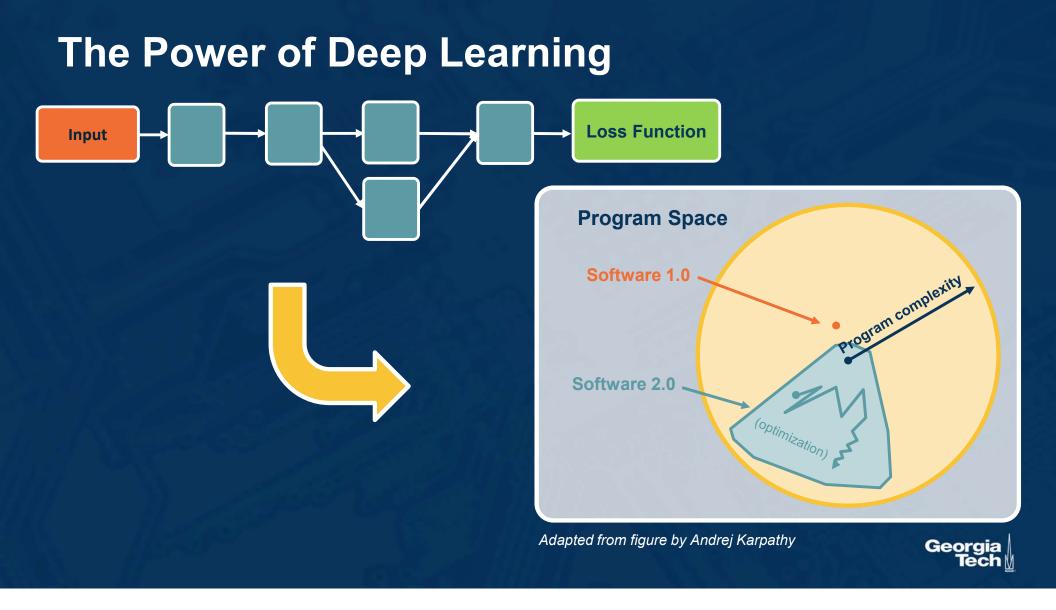
Applications:

```
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
    for j := lo to hi do
        if A[j] < pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i
```

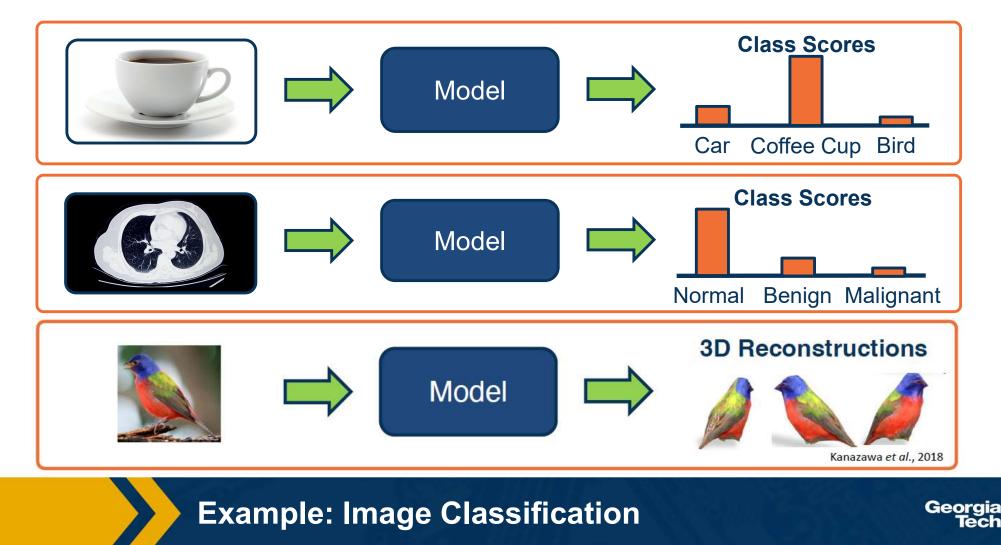


Machine Learning Applications



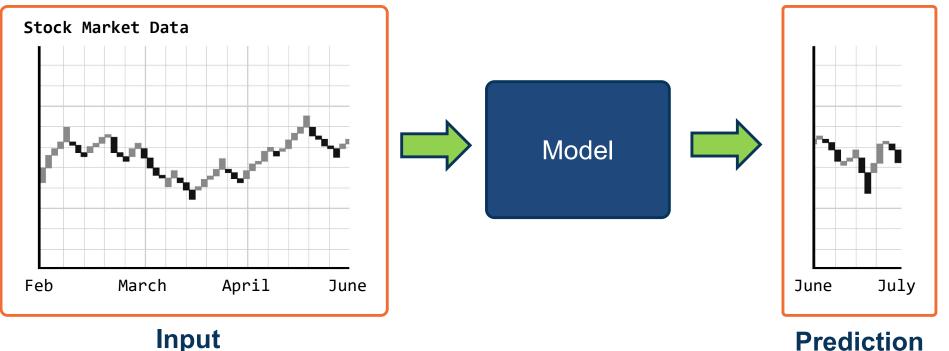


Application: Computer Vision



Application: Time-Series Forecasting

Given a series of measurements, output prediction for next time period



Input

Application: Natural Language Process (NLP)

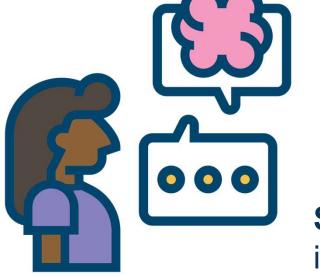
Very large number of NLP sub-tasks:

- Syntax Parsing
- Translation
- Named entity recognition
- Summarization

Sequence modeling: Variable length sequential inputs and/or outputs

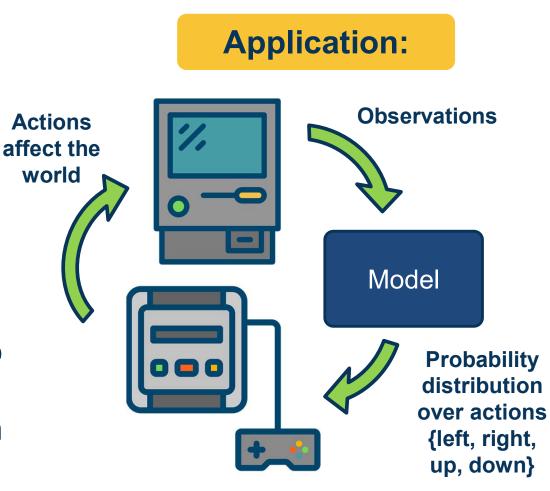
Recent progress: Large-scale language models

Example: Natural Language Processing (NLP)



Decision-making tasks

- Sequence of inputs/outputs
- Actions affect the environment



Examples: Chess / Go, Video Games, Recommendation Systems, Network Congestion Control, ...

Example: Decision-Making Tasks

Robotics involves a **combination** of AI/ML techniques:

- Sense: Perception
- Plan: Planning
- Act: Controls/Decision-Making

Some things are **learned** (perception), while others programmed

Evolving landscape

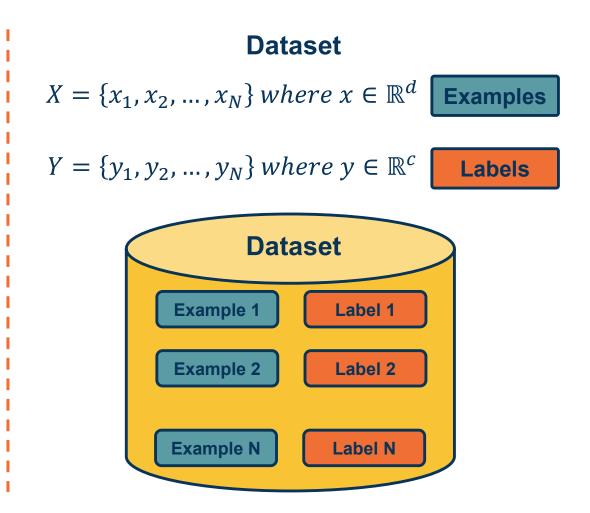
Example: Robotics

Supervised Learning and Parametric Models

Supervised	Unsupervised	Reinforcement
Learning	Learning	Learning

- **Train Input:** $\{X, Y\}$
- Learning output: $f : X \rightarrow Y$, e.g. a **distribution** P(y|x)

Cat	Dog



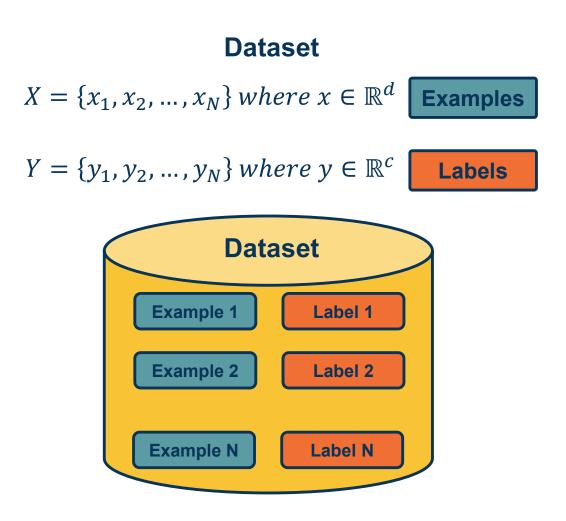
Types of Machine Learning

Supervised Learning

- Train Input: $\{X, Y\}$
- Learning output: $f : X \rightarrow Y$, e.g. P(y|x)

Terminology:

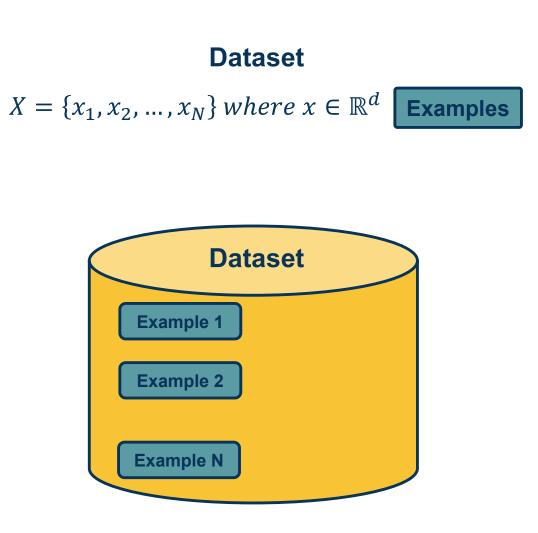
- Model / Hypothesis Class
 - $H: \{h: X \to Y\}$
 - Learning is search in hypothesis space
- Note inputs x_i and y_i are each represented as vectors



Types of Machine Learning

Unsupervised Learning

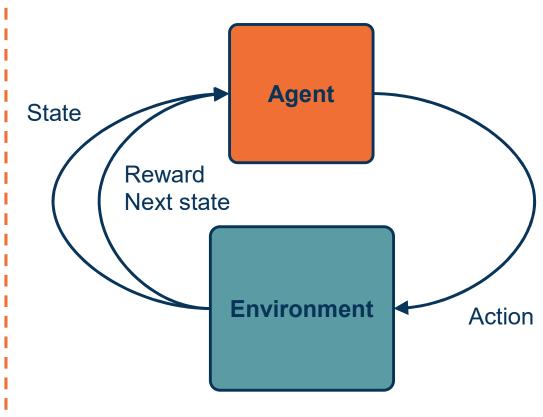
- Input: {*X*}
- Learning output: $P_{data}(x)$
- How likely is x under P_{data} ?
- Can we sample from P_{data}?
- Example: Clustering, density estimation, generative modeling, etc.



Types of Machine Learning

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take



Adapted from: http://cs231n.stanford.edu/slides/2020/lecture_17.pdf

Supervised Learning

- Train Input: $\{X, Y\}$
- Learning output: $f: X \rightarrow Y$, e.g. P(y|x)

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

Very often combined, sometimes within the same model!

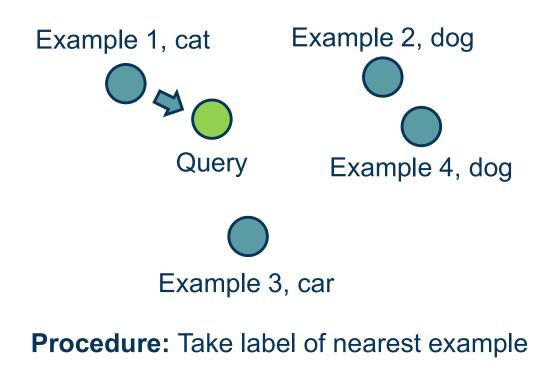
Non-Parametric Model

No explicit model for the function, **examples**:

- Nearest neighbor classifier
- Decision tree

Capacity (size of hypothesis class) grow with size of training data!

Non-Parametric – Nearest Neighbor



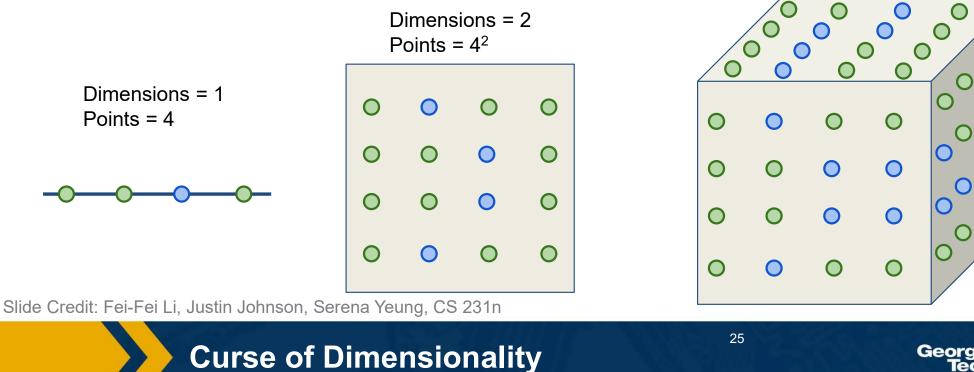
k-Nearest Neighbor on images almost never used.

- Curse of dimensionality

 Lots of weird behavior in high-dimensional spaces, e.g. orthogonality of random vectors, percentage of points around shell, etc.

Dimensions = 3 Points = 4^3

C



- Curse of Dimensionality
 - Distances become meaningless in high dimensions
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbor search

Problems with Instance-Based Learning

Parametric Model

Explicitly model the function $f : X \rightarrow Y$ in the form of a parametrized function f(x, W) = y, **examples**:

Logistic regression/classification

Neural networks

Capacity (size of hypothesis class) **does not** grow with size of training data!

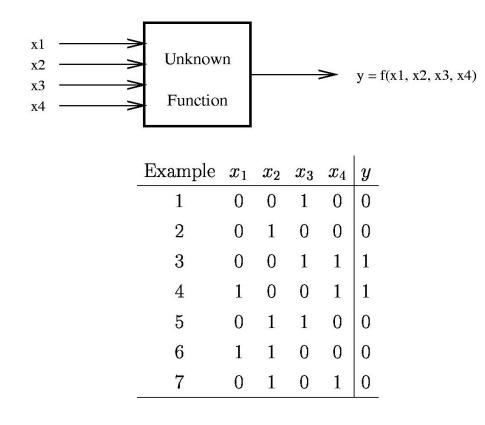
Learning is **search**

Supervised Learning

Parametric – Linear Classifier

$$f(x,W) = Wx + b$$

A Learning Problem



No Assumptions means no learning

Learning from a Broader Perspective

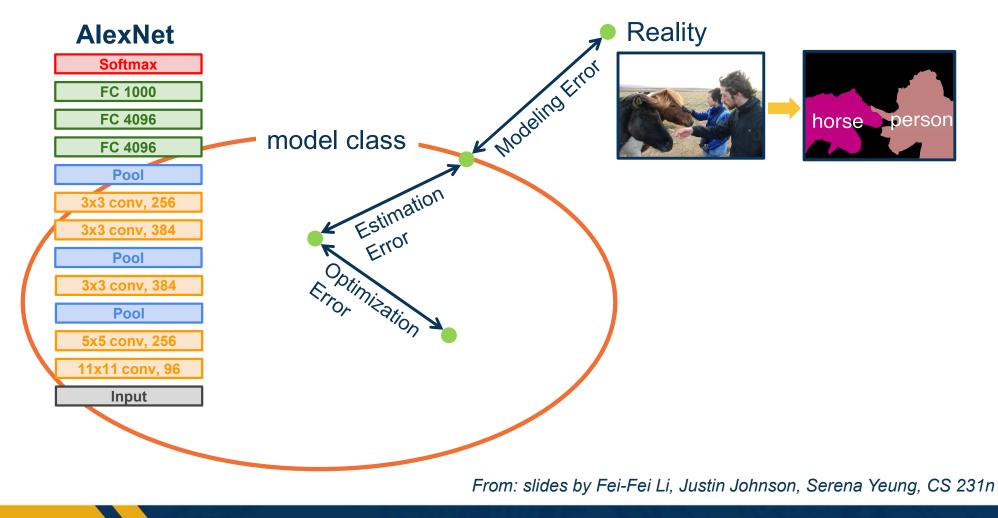
Training Stage: Training Data { (x_i, y_i) } \rightarrow h (Learning)

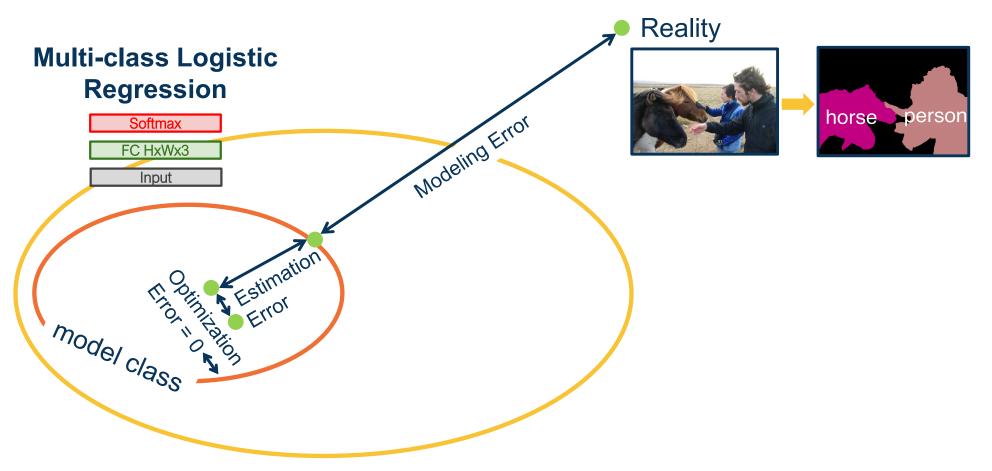
Testing Stage Test Data $x \rightarrow h(x)$ (Apply function, Evaluate error)

Probabilities to rescue:

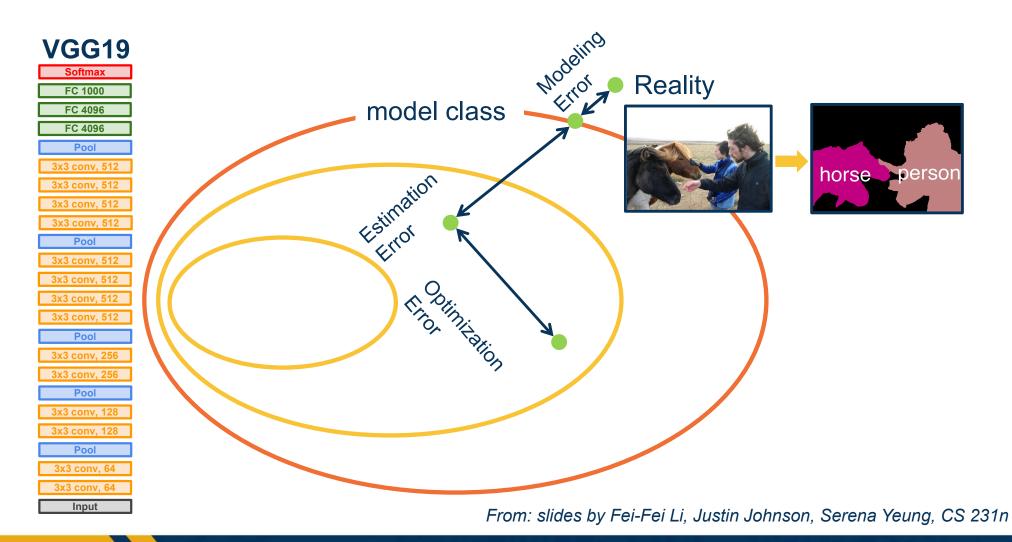
X and Y are random variables $D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X,Y)$

IID: Independent Identically Distributed
 Both training & testing data sampled IID from P(X,Y)
 Learn on training set
 Have some hope of *generalizing* to test set





From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



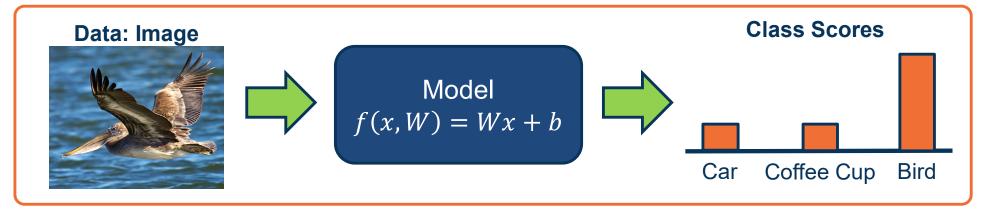
20 years of research in Learning Theory oversimplified:

If you have:

Enough training data D and H is not too complex then *probably* we can generalize to unseen test data

Caveats: A number of recent empirical results question our intuitions built from this clean separation.

Zhang et al., Understanding deep learning requires rethinking generalization



Input {X, Y} where:

- X is an image
- Y is a ground truth label annotated by an expert (human)
- f(x, W) = Wx + b is our model, chosen to be a linear function in this case
- W and b are the parameters (weights) of our model that must be learned

Input image is **high-dimensional**

- For example n=512 so 512x512 image = 262,144 pixels
- Learning a classifier with highdimensional inputs is hard

Before deep learning, it was typical to perform **feature engineering**

 Hand-design algorithms for converting raw input into a lowerdimensional set of features

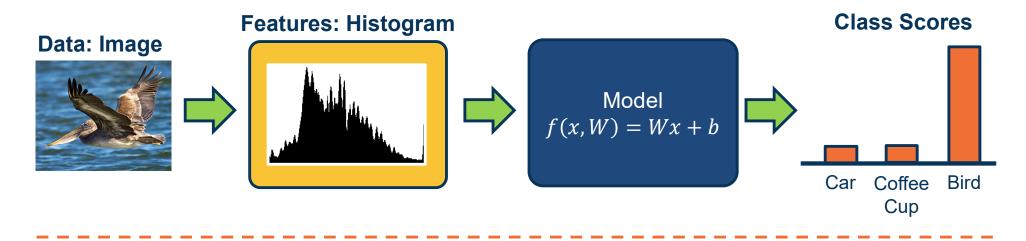
$$x = \begin{bmatrix} x_{11} & x_{12} & & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$

Input Representation: Feature Engineering

Example: Color histogram

- Vector of numbers representing number of pixels fitting within each bin
- We will later see that learning the feature representation itself is much more effective

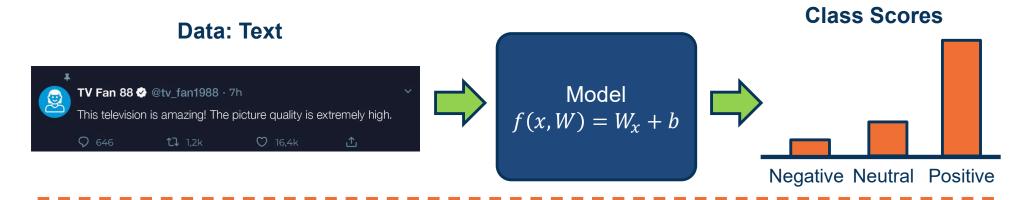
Input Representation: Feature Engineering



Input {X, Y} where:

- X is an image histogram
- Y is a ground truth label represented a probability distribution
- f(x, W) = Wx + b is our model, chosen to be a linear function in this case
- W and b are the weights of our model that must be learned

Example: Image Classification



Input {X, Y} where:

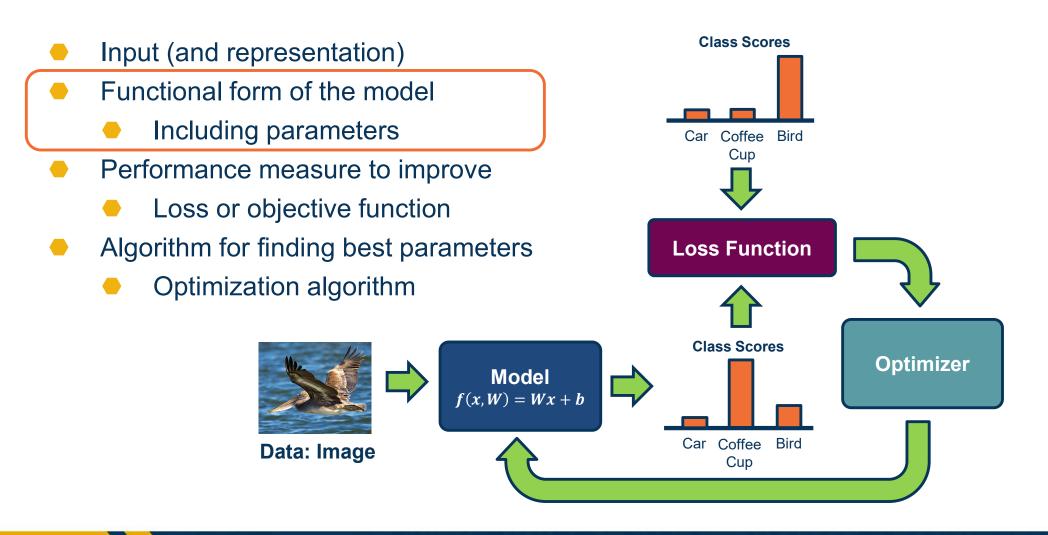
- X is a sentence
- Y is a ground truth label annotated by an expert (human)
- f(x,W) = Wx + b is our model, chosen to be a linear function in this case
- W and b are the weights of our model that must be learned

Word Histogram

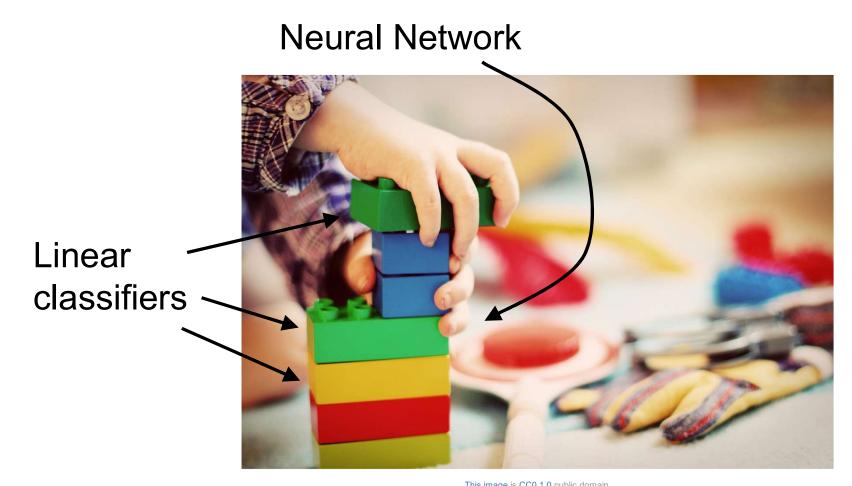
Word	Count
this	1
that	0
is	2
extremely	1
hello	0
onomatopoeia	0

Example: Image Classification

Components of a Parametric Learning Algorithm

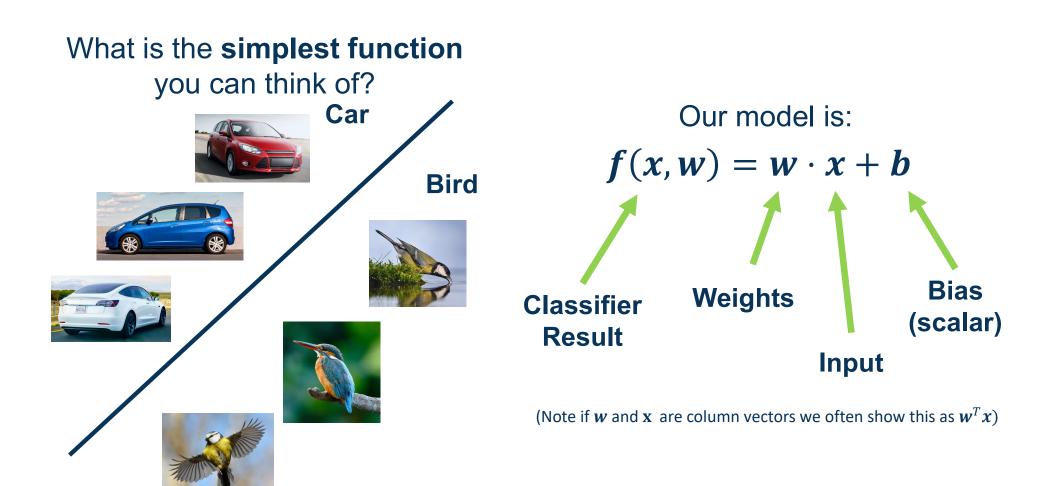


Components of a Parametric Model



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning as Legos



Linear Classification and Regression

Simple linear classifier:

- Calculate score: $f(x, w) = w \cdot x + b$
- Binary classification rule
 (*w* is a vector):

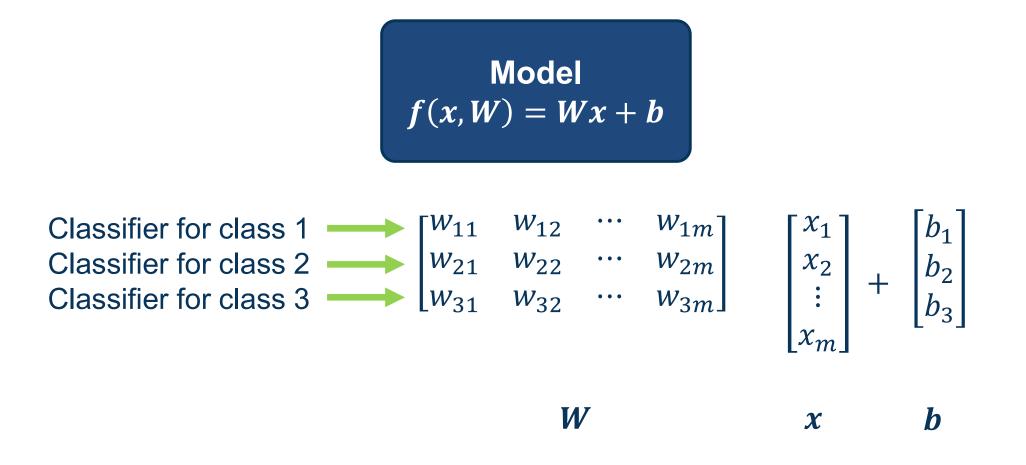
 $y = \begin{cases} 1 & \text{if } f(x, w) > = 0 \\ 0 & \text{otherwise} \end{cases}$

For multi-class classifier take class with highest (max) score f(x, W) = Wx + b



To simplify notation we will refer to inputs as $x_1 \cdots x_m$ where $m = n \times n$

Input Dimensionality



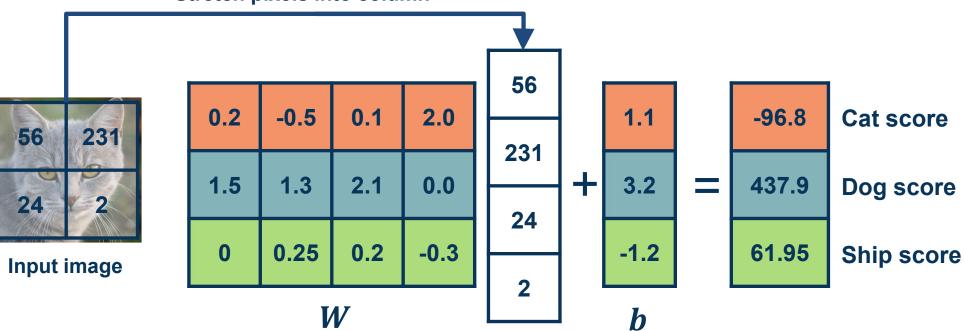
(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

- We can move the bias term into the weight matrix, and a "1" at the end of the input
- Results in one matrix-vector multiplication!

Model f(x, W) = Wx + b

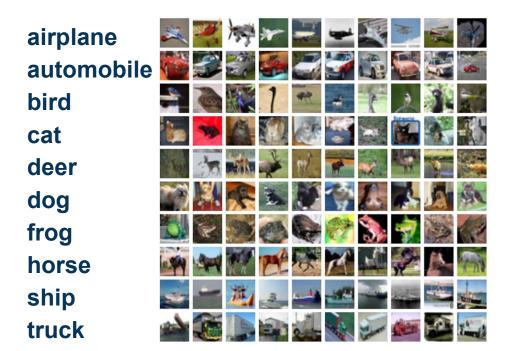
 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \\ 1 \end{bmatrix}$

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Stretch pixels into column

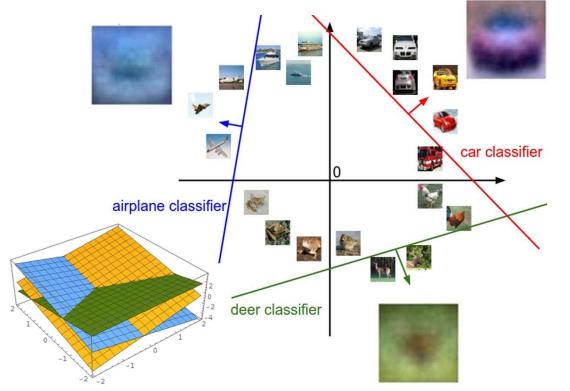
Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n



Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n



Geometric Viewpoint

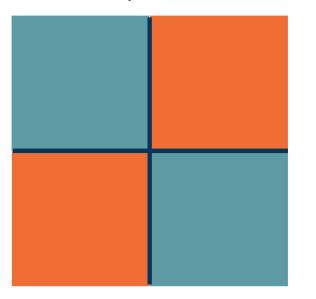
f(x,W) = Wx + b

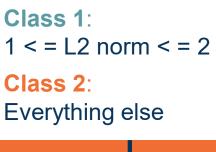
Array of **32x32x3** numbers (3072 numbers total)

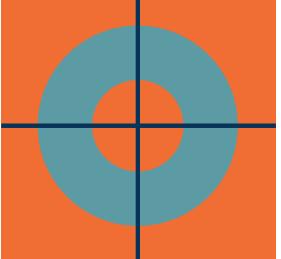
Plot created using Wolfram Cloud

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

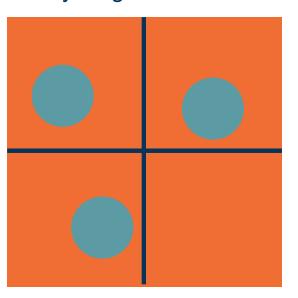
Class 1: number of pixels > 0 odd Class 2: number of pixels > 0 even



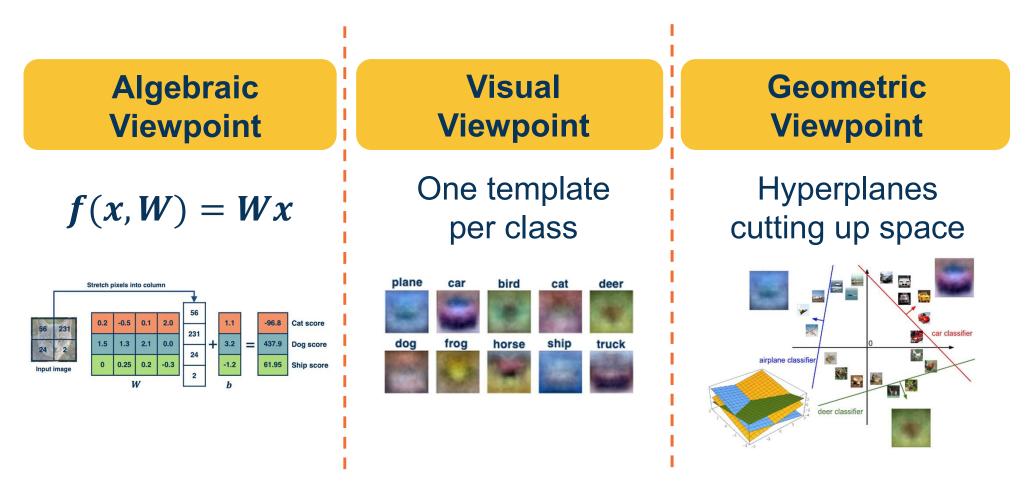




Class 1: Three modes Class 2: Everything else



Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n



Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Linear Classifier: Three Viewpoints

- We will learn complex, parameterized functions
 - Start w/ simple building blocks such as linear classifiers
- Key is to learn parameters, but learning is hard
 - Sources of generalization error
 - Add bias/assumptions via architecture, loss, optimizer
- Components of parametric classifiers:
 - Input/Output, Model (function), Loss function, Optimizer
 - Example: Image/Label, Linear Classifier, Hinge Loss, ?

