
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Backpropagation
• Matrix/Linear Algebra view



Administrivia

• Assignment 1 out!
• Due Feb 3rd (with grace period 5th)
• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Resources: 
• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)

• Piazza: Project teaming thread
• Project proposal overview during my OH (Thursday 3pm ET)
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative (gradient):

⬣ Steepest descent direction is the negative 
gradient

⬣ Intuitively: Measures how the function 
changes as the argument a changes by a small 
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 
loss function changes as weights are varied

⬣ Can consider each parameter separately 
by taking partial derivative of loss 
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif



The same two-layered neural network 
corresponds to adding another 
weight matrix

⬣ We will prefer the linear algebra 
view, but use some terminology 
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Large (deep) networks can be built by 
adding more and more layers

Three-layered neural networks can 
represent any function

⬣ The number of nodes could grow 
unreasonably (exponential or worse) 
with respect to the complexity of the 
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Functions can be made arbitrarily complex (subject to memory and 
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss 
Function



⬣ We are learning complex models with significant amount of 
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep 
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 
Function

𝒊
?



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



⬣ We want to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



⬣ We can compute local gradients: 
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its 
parameters and inputs!

Example: If  ℓ ℓି𝟏

then  
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

and  
𝝏𝒉ℓ

𝝏𝒘𝒊

ℓି𝟏,𝑻

Computing the Local Gradients: Example

(a sparse matrix with 

in the i-th row



⬣ We will use the chain rule to compute: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

⬣ Gradient of loss w.r.t. weights: 
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

Given by upstream 
module (upstream 
gradient)
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop

(C) Dhruv Batra 46

+

+

FPROP BPROP
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PY



Summary

• Neural networks involves composing simple functions into a 
computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 
rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? 

• How can we implement this algorithmically to make these 
calculations automatic? Automatic Differentiation



Linear 
Algebra 

View: 
Vector and 

Matrix Sizes



Closer Look at a Linear Classifier

Sizes: 

Where is number of classes

is dimensionality of input



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×ℓ

M

M
𝟏

𝟐

𝟏

𝟐

Tensors



Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices: 
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×ℓ

⬣ What is the size of 
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size )

⬣ What is the size of 
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size )

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎



Conventions:

⬣ What is the size of 
𝝏𝒗𝟏

𝝏𝒗𝟐 ? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row 

Col 

𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used. 

ଵ ଶ



Dimensionality of Derivatives

Conventions:

⬣ What is the size of 
𝝏𝒔

𝝏𝑴
? A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used. 



Examples

𝟏

𝟐
𝟐

𝑻
𝒌 𝒌

𝒌

Example 1:

Example 2:

𝟏 𝒎

𝟏 𝒎 because 
𝒌 𝒌𝒌

𝒊
𝒊

𝑻



Examples

𝝏(𝒘𝑨𝒘)

𝝏𝒘
𝑻 (assuming A is symmetric) 

Example 3:

Example 4:

Row 

Col 
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯  

⋯  ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯  

⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

= 𝒊𝒋 𝒊 𝒊𝒋 𝒋

𝒋



Dimensionality of Derivatives in ML

⬣ What is the size of 
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size , our batch is of 
size 

⬣ Each instance is a matrix (e.g. grayscale image) of 
size , our batch is 

⬣ Each instance is a multi-channel matrix (e.g. color 
image with R,B,G channels) of size , our 
batch is 

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of 
derivatives!

⬣ This can also be done for partial derivatives 
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏



Fully Connected (FC) Layer: Forward Function 

ℓି𝟏 ℓ

FunctionInput Output

Parameters

𝒊
𝑻

ℓ ℓି𝟏ℓ ℓି𝟏

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ

ℓ

ℓష𝟏

ℓି𝟏 ℓ

ℓ

ℓି𝟏

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ Note doing this on full 
matrix would result in 
Jacobian tensor!

But it is sparse – each 
output only affected by 
corresponding weight row

ℓ

ℓష𝟏

𝒊
𝑻 ℓ

ℓ

𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



We can employ any differentiable 
(or piecewise differentiable) 
function

A common choice is the Rectified 
Linear Unit 

⬣ Provides non-linearity but better 
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
c

2

1.
8
1.
6
1.
4
1.
2
1

0.
8
0.
6
0.
4
0.
2
0

-2 -
1.
5

-1 -
0.
5

0 0.
5

1 1.
5

2

max(0,_)



Full Jacobian of ReLU layer is large 
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 
because it is element-wise

⬣ An output value affected only by 
corresponding input value

Max function funnels gradients 
through selected max

⬣ Gradient will be zero if input 
<= 0

Jacobian of ReLU

ℓି𝟏 ℓ

FunctionInput Output

Parameters

Forward: ℓ ℓି𝟏

Backward: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

ℓ ℓି𝟏

ℓ

ℓି𝟏

ℓି𝟏

For diagonal



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary

• Neural networks involves composing simple functions into a 
computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 
rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? Next Time!

• How can we implement this algorithmically to make these 
calculations automatic? Automatic Differentiation


