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Topics:
• Backpropagation / Automatic Differentiation
• Jacobians



Administrivia

• Assignment 1 out!
• Due Feb 3rd (with grace period 5th)
• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Resources: 
• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)

• Piazza: Project teaming thread
• Will post video of project overview



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



⬣ We want to to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾



5

Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×ℓ

M

M
𝟏

𝟐

𝟏

𝟐

Tensors



Dimensionality of Derivatives in ML

⬣ What is the size of 
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:



Fully Connected (FC) Layer: Forward Function 

ℓି𝟏 ℓ

FunctionInput Output

Parameters

𝒊
𝑻

ℓ ℓି𝟏ℓ ℓି𝟏

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ

ℓ

ℓష𝟏

ℓି𝟏 ℓ

ℓ

ℓି𝟏

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ Note doing this on full 
matrix would result in 
Jacobian tensor!

But it is sparse – each 
output only affected by 
corresponding weight row

ℓ

ℓష𝟏

𝒊
𝑻 ℓ

ℓ

𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



We can employ any differentiable 
(or piecewise differentiable) 
function

A common choice is the Rectified 
Linear Unit 

⬣ Provides non-linearity but better 
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU
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c
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Full Jacobian of ReLU layer is large 
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 
because it is element-wise

⬣ An output value affected only by 
corresponding input value

Max function funnels gradients 
through selected max

⬣ Gradient will be zero if input 
<= 0

Jacobian of ReLU

ℓି𝟏 ℓ

FunctionInput Output

Parameters

Forward: ℓ ℓି𝟏

Backward: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

ℓ ℓି𝟏

ℓ

ℓି𝟏

ℓି𝟏

For diagonal



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary

• Neural networks involves composing simple functions into a 
computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 
rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? This Time!

• How can we implement this algorithmically to make these 
calculations automatic? Automatic Differentiation



Vectorizaiton
in Function 

Compositions 



Composition of Functions & Chain Rule

ℓ ℓି𝟏 𝟏

Composition of Functions:

A complex function (e.g. defined by a neural network):

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

ℓ ℓି𝟏 𝟏



Scalar Case



Vector Case



Jacobian View of Chain Rule



Graphical View of Chain Rule



Chain Rule: Cascaded



⬣ Input: 𝑫

⬣ Binary label: 

⬣ Parameters: 𝑫

⬣ Output prediction: 
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss: 
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato



We have discussed computation 
graphs for generic functions

Machine Learning functions 
(input -> model -> loss function) 
is also a computation graph

We can use the computed 
gradients from 
backprop/automatic 
differentiation to update the 
weights! 

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙



Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms 
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= 𝑳ത 𝒑 ഥ 𝒖ഥ = −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

     = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 
L to w



The chain rule can be 
computed as a series of 
scalar, vector, and matrix 
linear algebra operations

Extremely efficient in 
graphics processing units 
(GPUs)

Vectorized Computations

𝑻
ି𝒖

𝟏

𝝈 𝒘𝑻𝒙
𝑻 𝑻 𝑻



2 1

𝟏 𝟐 𝟏 𝟐 𝟐 We want to find the partial 
derivative of output f (output) 
with respect to all intermediate 
variables

⬣ Assign intermediate variables

Simplify notation: 

Denote bar as: ଷ
డ

డయ

⬣ Start at end and move 
backward

Example

𝟑

𝟐𝟏



Example

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏
  

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏   𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐
  

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐
  

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
  

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients 
from multiple 
paths 
summed

Path 1
(P1)

Path 2
(P2)



Patterns of Gradient Flow: Addition

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
  𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
  

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients 
along all paths!



Patterns of Gradient Flow: Multiplication

1 2

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐
  

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐
  

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
  

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient 
switcher (multiplies it by the values of 
the other term)



Several other patterns as well, e.g.:

Max operation selects which path to 
push the gradients through

⬣ Gradient flows along the path 
that was “selected” to be max 

⬣ This information must be 
recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep 
neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

5 1

5

gradient

gradient



Computation Graph of 
primitives (automatic 
differentiation) Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Backpropagation
and Automatic 
Differentiation



Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)

(C) Dhruv Batra 34



35

Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Backpropagation does not really spell out how to efficiently 
carry out the necessary computations

But the idea can be applied to any directed acyclic graph 
(DAG)

⬣ Graph represents an ordering constraining which paths 
must be calculated first

Given an ordering, we can then iterate from the last module 
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for 
efficient computation

⬣ We will do this automatically by computing backwards 
function for primitives and as you write code, express the 
function with them

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



Automatic differentiation:

⬣ Carries out this procedure for us 
on arbitrary graphs

⬣ Knows derivatives of primitive 
functions

⬣ As a result, we just define these 
(forward) functions and don’t 
even need to specify the 
gradient (backward) functions!

Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms 
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

     = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 
L to w



⬣ Key idea is to explicitly store 
computation graph in 
memory and corresponding 
gradient functions

⬣ Nodes broken down to basic  
primitive computations 
(addition, multiplication, log, 
etc.) for which 
corresponding derivative is 
known

Computational Implementation

𝟐
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
𝟏 𝟐

1

𝟑

𝟐𝟏

2



Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20)) 

𝒉 𝒙

MM MM

Add

Tanh

A graph is created on the fly
Back-propagation uses the 

dynamically built graph

From pytorch.org



Note that we can also do forward mode 
automatic differentiation

Start from inputs and propagate gradients 
forward

Complexity is proportional to input size

⬣ Memory savings (all forward pass, no 
need to store activations)

⬣ However, in most cases our inputs 
(images) are large and outputs 
(loss) are small

Automatic Differentiation

1 2

𝟑 𝟏+ 𝟐

𝟏 𝟏 𝟐

𝟏 𝟏 𝟏 𝟐 𝟏 𝟐 𝟏 𝟐



Forward Mode Autodifferentiation

g
ℓ ℓ

ℓି𝟏

ℓି𝟏ℓି𝟏

Assume given

See https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



⬣ Computation graphs are not 
limited to mathematical 
functions!

⬣ Can have control flows (if 
statements, loops) and 
backpropagate through 
algorithms!

⬣ Can be done dynamically so 
that gradients are computed, 
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0


