Topics:

• Convolution

CS 4644-DL / 7643-A ZSOLT KIRA

Assignment 2

- Implement convolutional neural networks
- Resources (in addition to lectures):
	- DL book: Convolutional Networks
	- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
	- Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
	- There will be various OH tutorials
	- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• GPU resources

- For assignments, can use CPU or Google Colab
- Projects:
	- Google Cloud Credits

Even given a good neural network architecture, we need a good optimization algorithm to find good weights

- What **optimizer** should we use?
	- Different optimizers make different weight updates depending on the gradients
- How should we initialize the weights?
- What regularizers should we use?
- What **loss function** is appropriate?

Key idea: Rather than combining velocity with current gradient, go along velocity first and then calculate gradient at new point

We know velocity is probably a reasonable direction

$$
\widehat{w}_{i-1} = w_{i-1} + \beta v_{i-1}
$$

$$
v_i = \beta v_{i-1} + \frac{\partial L}{\partial \widehat{w}_{i-1}}
$$

$$
w_i = w_{i-1} - \alpha v_i
$$

Solution: Time-varying bias correction

Typically $\beta_1 = 0.9$, $\beta_2 = 0.999$

So \widehat{v}_i will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and i larger)

$$
v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}}\right)
$$

$$
G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2
$$

$$
\widehat{v}_i = \frac{v_i}{1 - \beta_1^t} \qquad \widehat{G}_i = \frac{G_i}{1 - \beta_2^t}
$$

$$
w_i = w_{i-1} - \frac{\alpha \widehat{v}_i}{\sqrt{\widehat{G}_i + \epsilon}}
$$

An idea: For each node, keep its output with probability p

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

- flexibility through **learnable parameters** \begin{cases} Output: $\{y_i = BN_{\gamma,\beta}(x_i)\} \end{cases}$ γ (scale) and β (shift)
- Network can learn to not normalize if necessary!
- ⬣ This layer is called a Batch Normalization (BN) layer

We can give the model Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β

$$
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
$$
\n
$$
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2
$$
\n
$$
/ / \min\text{-} \text{batch variance}
$$

$$
\widehat{x}_i \leftarrow \frac{x_i - \mu \mathbf{B}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
$$
\n
$$
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i)
$$
\n// normalize\n// scale and shift

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Learnable Scaling and Offset

- **Example: Cross entropy loss**
	-
- Accuracy is measured based on:

Since the correct class score only has **Example:** Cross entropy loss
 $L = -log P(Y = y_i | X = x_i)$

Accuracy is measured based on:
 $argmax_i(P(Y = y_i | X = x_i))$

Since the correct class score only has

to be slightly higher, we can have flat

loss curves but increasing

accuracy! loss curves but increasing accuracy!

Simple Example: Cross-Entropy and Accuracy Geo-

Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions

Definitions

- True Positive Rate: $TPR = \frac{tp}{\ln(5r)}$ and $\frac{9}{5}$ as
- False Positive Rate: $\mathbf{FPR} = \frac{fp}{f_{\text{net}} + f_{\text{net}}}$
- \bullet $Accuracy = \frac{tp+tn}{tn+tn+fn+fn}$ $tp+tn+fp+fn$

Example: Precision/Recall or ROC Curves

Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions

Definitions

- True Positive Rate: $TPR = \frac{tp}{\ln(5r)}$ and $\frac{9}{5}$ as
- False Positive Rate: $\mathbf{FPR} = \frac{fp}{f_{\text{net}} + f_{\text{net}}}$
- \bullet $Accuracy = \frac{tp+tn}{tn+tn+fn+fn}$ $tp+tn+fp+fn$
- We can obtain a **curve** by varying the (probability) threshold:
	- Area under the curve (AUC) common single-number metric to summarize
- Mapping between this and loss is **not simple!**

Resource:

A disciplined approach to neural network hyperparameters: Part 1 -learning rate, batch size, momentum, and weight decay, Leslie N. Smith

Convolution & Pooling

The connectivity in linear layers doesn't always make sense

How many parameters? \bullet M*N (weights) + N (bias) Hundreds of millions of parameters for just one layer Connected More parameters => More data needed Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
	- **Edges**
	- Color
	- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a bias in the design of a neural network layer to reflect this?

Locality of Features

Each node only receives input from $K_1 \times K_2$ window (image patch)

Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1)$ $*$ N where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Idea 1: Receptive Fields

Nodes in different locations can share features

- No reason to think same feature des in different locations can **share**
tures
No reason to think same feature
(e.g. edge pattern) can't appear
elsewhere
Use same weights/parameters in elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1)$
- Explicitly maintain spatial information

Idea 2: Shared Weights

We can learn **many** such features for this one layer

> Weights are not shared across different feature extractors

Parameters: $(K_1 \times K_2 + 1)$ $*$ *M* where *M* is number of features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of \mathbb{I} f^{*g} the original functions is translated.

Convolution is similar to cross-correlation.

It has **applications** that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

From https://en.wikipedia.org/wiki/Convolution

Notation: $F \otimes (G \otimes I) = (F \otimes G) \otimes I$

1D Convolution

$$
y_k = \sum_{n=0}^{N-1} h_n \cdot x_{k-n} \qquad \qquad y_1 = h_1 \cdot x_0 + h_2 \cdot x_0 + h_3 \cdot x_0 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_6 \cdot x_0 + h_7 \cdot x_1 + h_7 \cdot x_1 + h_8 \cdot x_0 + h_9 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_0 + h_1 \cdot x_1 + h_2 \cdot x_0 + h_3 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_0 + h_1 \cdot x_1 + h_1 \cdot x_1 + h_2 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_6 \cdot x_1 + h_7 \cdot x_1 + h_8 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_6 \cdot x_1 + h_7 \cdot x_1 + h_8 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_7 \cdot x_1 + h_8 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_6 \cdot x_1 + h_7 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_3 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_3 \cdot x_1 + h_4 \cdot x_1 + h_5 \cdot x_1 + h_6 \cdot x_1 + h_7 \cdot x_1 + h_9 \cdot x_1 + h_9 \cdot x_1 + h_1 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_3 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_3 \cdot x_1 + h_1 \cdot x_1 + h_3 \cdot x_1 + h_3 \cdot
$$

$$
y_0 = h_0 \cdot x_0
$$

\n
$$
y_1 = h_1 \cdot x_0 + h_0 \cdot x_1
$$

\n
$$
y_2 = h_2 \cdot x_0 + h_1 \cdot x_1 + h_0 \cdot x_2
$$

\n
$$
y_3 = h_3 \cdot x_0 + h_2 \cdot x_1 + h_1 \cdot x_2 + h_0 \cdot x_3
$$

\n
$$
\vdots
$$

2D Convolution

2D Discrete Convolution

2D Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

2D Convolution

2D Discrete Convolution

1. Flip kernel (rotate 180 degrees)

2. Stride along image

The Intuitive Explanation

As we have seen:

- Convolution: Start at end of kernel and move back **Cross-correlation:** Start in the beginning of $K = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
- kernel and move forward (same as for image)
- An intuitive interpretation of the relationship:
- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip") $K' = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
y(r,c) = (x * k)(r, c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a, c+b) k(a, b)
$$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad X(0:2,0:2) \cdot K' = 65 + bias
$$

Dot product (element-wise multiply and sum)

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a **duality** between them during backpropagation
- Convolutions have various mathematical properties people care about
- This is **historically** how it was inspired

Input & Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) Number of channels in the input image
- out_channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0
- . padding_mode (string, optional) 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.

Output size of vanilla convolution operation is $(H - k_1 + 1) \times (W - k_2 + 1)$

This is called a "valid" convolution and only applies kernel within image

Valid Convolution

We can **pad the images** to make the output the same size:

C Zeros, mirrored image, etc.

-
- **pad the images** to make the output the same size:
Zeros, mirrored image, etc.
Note padding often refers to pixels added to **one size** Note padding often refers to pixels added to **one size** ($P = 1$ here)

 $W + 2$

 $W + 2 - k_2 + 1$

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride = 2 (every other pixel)

Stride can result in **skipped pixels**, e.g. stride of 3 for 5x5 input

 W

We have shown inputs as a **one-channel image** but in reality they have three
channels (red, green, blue)
In such cases, we have **3-channel kernels**! channels (red, green, blue)

In such cases, we have 3-channel kernels!

We have shown inputs as a **one-channel image** but in reality they have three
channels (red, green, blue)
In such cases, we have **3-channel kernels**! channels (red, green, blue)

In such cases, we have 3-channel kernels!

-channel image but in reality they have three
S-channel kernels!
Similar to before, we perform element-wise
multiplication between kernel and image
patch, summing them up (dot product) multiplication between kernel and image patch, summing them up (dot product) **el image** but in reality they have three
 ical kernels!

to before, we perform **element-wise**
 ication between kernel and image

summing them up (dot product)

Except with $k_1 * k_2 * 3$ values

Operation of Multi-Channel Input

We can have multiple kernels per layer

We stack the feature maps together at the output

Number of channels in output is equal to number of kernels

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Example:
 $k_1 = 3, k_2 = 3, N = 4$ input channels = 3, then $(3 * 3 * 3 + 1) * 4$ Example: $k_1 = 3, k_2 = 3, N = 4$ input channels = 3, then $(3 * 3 * 3 + 1) * 4 = 112$

Just as before, in practice we can vectorize this operation

Vectorization

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Just as before, in practice we can vectorize this operation

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

