CS 4644 / 7643-A DEEP LEARNING

Topics:

- Machine learning intro, applications (CV, NLP, etc.)
- Parametric models and their components

- PS0: This should take less than 3hrs!
- Please do it now, and give others a chance at waitlist if your background is not sufficient (beef it up and take it next time)
 - Do it even if you're on the waitlist!

- Office hours start next week
- Start finding your project partners

Collaboration

- Only on HWs and project (not allowed in HW0/PS0).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part
- Do NOT search for code implementing what we ask; search for concepts

Zero tolerance on plagiarism

- Neither ethical nor in your best interest
- Always credit your sources
- Don't cheat. We will find out.

- Two late days for each assignment (EXCEPT PS0).
 - Late submission gets 20% panelty
- After late days, you get a 0 (no excuses except medical)
 - Send all medical requests to dean of students (https://studentlife.gatech.edu/)
 - Form: https://gatech-advocate.symplicity.com/care-report/index.php/pid224342
- DO NOT SEND US ANY MEDICAL INFORMATION! We do not need any details, just a confirmation from dean of students

Learn Numpy!

CS231n Convolutional Neural Networks for Visual Recognition

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Machine Learning Overview

When is Machine Learning useful?

```
algorithm quicksort(A, lo, hi) is
  if lo < hi then
    p := partition(A, lo, hi)
    quicksort(A, lo, p - 1)
    quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
  pivot := A[hi]
  i := lo
  for j := lo to hi do
    if A[j] < pivot then
        swap A[i] with A[j]
    i := i + 1
  swap A[i] with A[hi]
  return i</pre>
```


When it's difficult / infeasible to write a program

Example: Object Recognition

This image by Nikita is licensed under CC-BY 2.0 What the computer sees What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Illumination

camera moves!

Deformation

licensed

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example: Machine Translation

But what about ...

- Word play, jokes, puns, hidden messages
- Concept gaps: go Jackets! George P. Burdell
- Other constraints: lyrics, dubbing, poem,
 ...
- •

The Power of Machine Learning

The Power of Machine Learning

The Power of (Deep) Machine Learning

TECHNOLOGY

A Massive Google Network Learns To Identify — Cats

June 26, 2012 · 3:00 PM ET

Heard on All Things Considered

All Things Considered host Audie Cornish talks with Andrew Ng, Associate Professor of Computer Science at Stanford University. He led a Google research team in creating a neural network out of 16,000 computer processors to try and mimic the functions of the human brain. Given three days on YouTube, the network taught itself how to identify — cats.

Source: https://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify

Application: Computer Vision

Application: Time Series Forecasting

Application: Natural Language Processing (NLP)

Very large number of NLP sub-tasks:

- Syntax Parsing
- Translation
- Named entity recognition
- Summarization
- Generation

Sequence modeling: Variable length sequential inputs and/or outputs

Recent progress: Large Language Models

Application: Decision Making

Example: Video Game

- Sequence of inputs/outputs
- Actions affect the environment

Examples: Chess / Go, Video Games, Recommendation Systems, Web Agents ...

Robotics involves a **combination** of Al/ML techniques:

Sense: Perception

Plan: Planning

Act: Controls

Some things are learned (perception), while others programmed

An evolving landscape

Application:

Rest of the lecture (also next lecture):

- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning

- Train Input: {X, Y}
- Learning output: $f: X \to Y$
- Usually f is a **distribution**, e.g. P(y|x)

https://en.wikipedia.org/wiki/CatDog

Dataset

$$X = \{x_1, x_2, ..., x_N\}$$
 where $x \in \mathbb{R}^d$ Examples

$$Y = \{y_1, y_2, ..., y_N\}$$
 where $y \in \mathbb{R}^c$ Labels

Supervised Learning

- Train Input: {*X*, *Y*}
- Learning output: $f: X \to Y$, e.g. p(y|x)

Terminology:

- Model / Hypothesis Class
 - $H:\{f:X\to Y\}$
 - Learning is search in hypothesis space

E.g.,
$$H = \{ f(x) = w^T x | w \in \mathbb{R}^d \}$$

Dataset

$$X = \{x_1, x_2, ..., x_N\}$$
 where $x \in \mathbb{R}^d$ **Examples**

$$Y = \{y_1, y_2, ..., y_N\}$$
 where $y \in \mathbb{R}^c$ Labels

Unsupervised Learning

- Input: {*X*}
- Learning output: $p_{data}(x)$
- How likely is x under p_{data} ?
- Can we sample from p_{data}?
- Example: Clustering, density estimation, generative modeling, ...

Dataset

$$X = \{x_1, x_2, ..., x_N\}$$
 where $x \in \mathbb{R}^d$ **Examples**

Reinforcement Learning

- Supervision in the form of reward
- No supervision on what action to take, but the expected outcome, e.g., control a robot to run fast.

Adapted from: http://cs231n.stanford.edu/slides/2020/lecture_17.pdf

Supervised Learning

- Train Input: {*X*, *Y*}
- Learning output: $f: X \to Y$, e.g. P(y|x)

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

Very often combined, sometimes within the same model!

Rest of the lecture (also next lecture):

- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

Non-Parametric Model

No explicit model for the function, **examples**:

- Nearest neighbor classifier
- Decision tree

Hypothesis class changes with the number of data points

Non-Parametric - Nearest Neighbor

Procedure: Take label of nearest example

Example 3, car

k-Nearest Neighbor on high-dimensional data (e.g., images) is *almost never* used.

Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2Points = 4^2

Dimensions = 3Points = 4^3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Curse of Dimensionality
 - Data required increases exponentially with the number of dimensions

- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features

Expensive

- No Learning: most real work done during testing
- For every test sample, must search through all dataset very slow!
- Must use tricks like approximate nearest neighbor search

Parametric Model

Explicitly model the function $f: X \to Y$ in the form of a parametrized function f(x, W) = y, **examples**:

- Linear classifier
 - Number of parameters grows linearly with the number of dimensions!
- Neural networks

Parametric - Linear Classifier

$$f(x,W) = Wx + b$$

Q: How many parameters to binaryclassify **N**-dimensional data? A: N + 1

Hypothesis classes doesn't change: we are simply searching for the optimal value for each parameter

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Rest of the lecture (also next lecture):

- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

- Functional form of the model
 - Including parameters
- Performance measure to improve
 - Loss or objective function
- Algorithm for finding best parameters
 - Optimization algorithm

Class Scores

Coffee

Cup

Bird

What is the **simplest function** you can think of? Car **Bird**

Our model is:

(Note if w and x are column vectors we often show this as w^Tx)

Linear Classification and Regression

Simple linear classifier:

Calculate score:

$$f(x,w)=w\cdot x+b$$

Binary classification rule (w is a vector):

$$y = \begin{cases} 1 & \text{if } f(x, w) > = 0 \\ 0 & \text{otherwise} \end{cases}$$

For multi-class classifier take class with highest (max) score f(x, W) = Wx + b

$$x = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$
 Flatten
$$x = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & \vdots & \vdots & \vdots & \vdots \\ x_{nn1} & \vdots & \vdots & \vdots & \vdots \\ x_{nn1} & \vdots & \vdots & \vdots & \vdots \\ x_{nn2} & \vdots & \vdots & \vdots & \vdots \\ x_{nn2} & \vdots & \vdots & \vdots & \vdots \\ x_{nn3} & \vdots & \vdots & \vdots & \vdots \\ x_{nn4} & \vdots & \vdots & \vdots & \vdots \\ x_{nn4} & \vdots & \vdots & \vdots & \vdots \\ x_{nn4} & \vdots & \vdots & \vdots & \vdots \\ x_{nn5} & \vdots & \vdots & \vdots & \vdots \\ x_{nn6} & \vdots & \vdots & \vdots & \vdots \\ x_{nn6} & \vdots & \vdots & \vdots & \vdots \\ x_{nn7} & \vdots & \vdots & \vdots & \vdots \\ x_{nn8} & \vdots & \vdots & \vdots \\ x_{nn8} & \vdots & \vdots & \vdots \\ x_{nn$$

To simplify notation we will refer to inputs as $x_1 \cdots x_m$ where $m = n \times n$

Classifier for class 1
$$w_{11}$$
 w_{12} w_{1m} w_{2m} Classifier for class 2 w_{21} w_{22} w_{31} w_{32} w_{3m} w_{3m} w_{3m} w_{3m} w_{3m} w_{3m} w_{3m}

 \boldsymbol{W} \boldsymbol{x}

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

- We can move
 the bias term
 into the weight
 matrix, and a "1"
 at the end of the
 input
- Results in one matrix-vector multiplication!

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \\ 1 \end{bmatrix}$$

$$W$$

Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize

Plot created using Wolfram Cloud

Geometric Viewpoint

$$f(x,W)=Wx+b$$

Recall: signed distance from point to plane

$$\frac{ax_1 + bx_2 + cx_3 + d}{\sqrt{a^2 + b^2 + c^2}}$$

Output of a linear classifier is the *unnormalized signed distance* from a data point to the hyperplane!

Class 1:

number of pixels > 0 odd

Class 2:

number of pixels > 0 even

Class 1:

1 < = L2 norm < = 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Neural Network

This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Linear

classifier

(Deep) Representation Learning for Classification

A function that transforms raw data space into a linearly-separable space

This image is CC0 1.0 public domain

Algebraic Viewpoint

$$f(x, W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Next time:

