CS 4644 / 7643-A DEEP LEARNING: LECTURE 3 DANFEI XU

- Linear Classifier (cont.)
- SVM / Hinge Loss
- Softmax Classifier and Cross-Entropy Loss
- Gradient Descent

MISC

- Make sure you know how to use Google Colab
- PS1 released
- Use Piazza!
- Start to find your project team!
- Shared sample project report in @6 on Piazza.

Recap:

Supervised Learning

- Train Input: {*X*, *Y*}
- Learning output: $f: X \to Y$, e.g. P(y|x)

Unsupervised Learning

- Input: {*X*}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

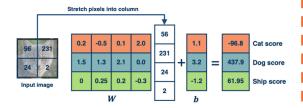
Very often combined, sometimes within the same model!

Modeling Recap: Reality model class Estination horse person

Recap:

Algebraic Viewpoint

$$f(x, W) = Wx$$

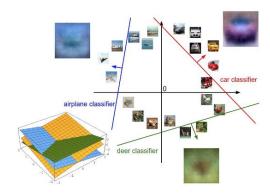


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



This time:

$$f(x, W) = Wx$$

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

- 1.Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

cat car frog 3.2

1.3

2.2

5.1

4.9

2.5

-1.7

2.0

-3.1

High Loss

Low Loss

High Loss

A **loss function** that tells how good the current classifier is

Given a dataset of examples:

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and

 y_i is (integer) label

Loss over the **dataset** is a sum of loss over examples:

$$L = \frac{1}{N} \sum L(f(x_i, W), y_i)$$

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

Notation: s_{y_i} is the **score** given by the classifier for the correct label class of the i-th example (y_i)

$$y_i = 0$$

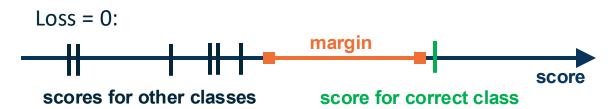
cat 3.2
$$s_{j=0} = s_{y_i}$$

car 3.1 $s_{j=1} \max(0, 3.1 - 3.2 + 1)$

frog
$$1.7 \quad s_{j=2} \quad \max(0, 1.7 - 3.2 + 1)$$

$$L = 0.9 + 0 = 0.9$$

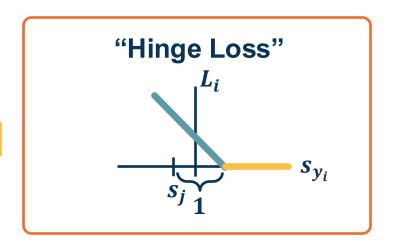
Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,



and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} max(0, s_{j} - s_{y_{i}} + 1)$$



Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$$

= max(0, 5.1 - 3.2 + 1) + max(0, -1.7 - 3.2 + 1)

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

cat

car

frog

3.2

5.1

-1.7

Losses: 2.9

1.3

4.9

2.0

0.0

2.2

2.5

-3.1

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$$

$$L = (2.9 + 0 + 12.9)/3$$
$$= 5.27$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

2.2

2.5

-3.1

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

Adapted from from CS 231n slides

12.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

$L_i = \sum_{i \neq v_i}$	$max(0, s_j - s_{y_i} + 1)$
ノーソレ	

Q: What happens to loss if car image scores change a bit (e.g., \pm 0.1)?

No change for small values

3.2

ca	t		

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

 $L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$

000

Q: What is min/max of loss value?

[0,inf]

cat

car

frog

5.1

3.2

-1.7

1.3

3 2.2

4.9 2.5

2.0 **-3.1**

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

$L_i = \sum_{j \neq y_i}$	$max(0, s_j - s_{y_i} + 1)$
---------------------------	-----------------------------

Q: At initialization W is close to 0 so all $s \approx 0$. What is the loss?

-1.7

2.0

cal	3.2	1.3	2.2
car	5.1	4.9	2.5

Adapted from from CS 231n slides

-3.1

frog

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

 $L_i = \frac{1}{C} \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$

Q: What if we used mean instead of sum?

cat

3.2

5.1

1.3

2.2

No difference Scaling by constant car

frog -1.7

4.9

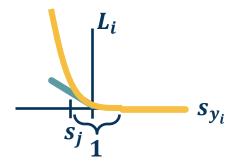
2.0

-3.1

2.5

$$L_i = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)^2$$

Q: What if we used squared hinge loss?



- Smooth loss around hinge
- Sensitive to outliers (larger penalty)

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def hinge_loss_vec(x, y, W):
    """

x (d): input example vectors
y (int): class label
W (C x d): weight matrix
    """

scores = W.dot(x)  # calculate raw scores
margins = np.maximum(0, scores - scores[y] + 1) # calculate margins s_j - s_{yi} + 1
margins[y] = 0 # exclude yi from the loss sum
loss_i = np.sum(margins). # sum across all j (classes)
return loss_i
```


$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0.

Q: Is this W unique?

Let's look at an example

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W)=Wx are:

cat **3.2** car 5.1 frog -1.7

1.3 **4.9** 2.0 2.2 2.5 -3.1

Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

With W twice as large:

```
= max(0, 2.6 - 9.8 + 1)
+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
```

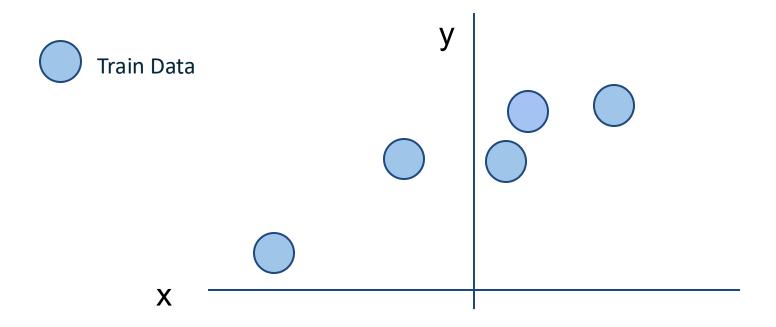

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0.

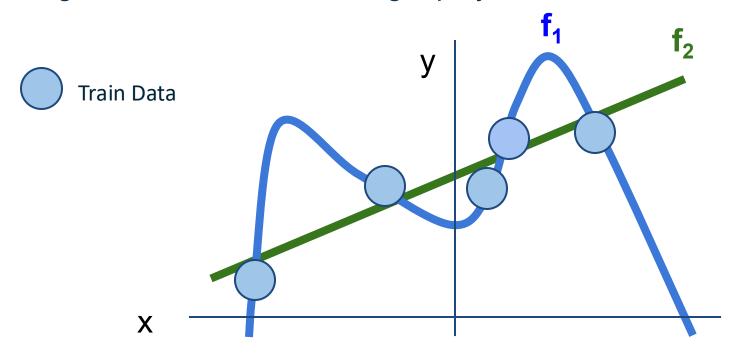
Q: Is this W unique?

No, 2W also has L=0 How do we choose between W, 2W, and 1e+7W?

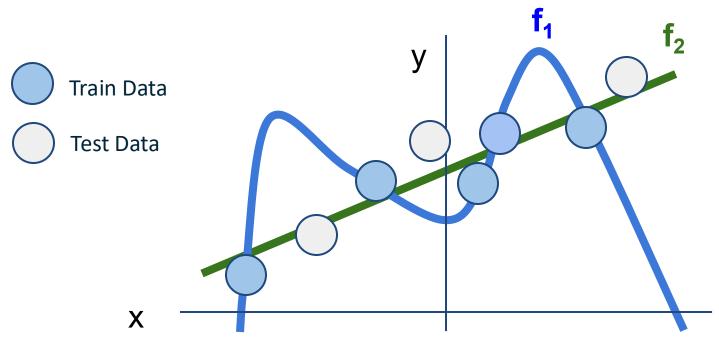
Regularization intuition: fitting a polynomial function



Regularization intuition: fitting a polynomial function



Regularization intuition: fitting a polynomial function



Regularization balances the simplicity of the function and loss, so we don't overfit to the noises in the data

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex (DNN-specific):

Dropout

Batch/layer normalization

Stochastic depth, fractional pooling, etc

Regularization: Implement a simple L2 regularizer

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

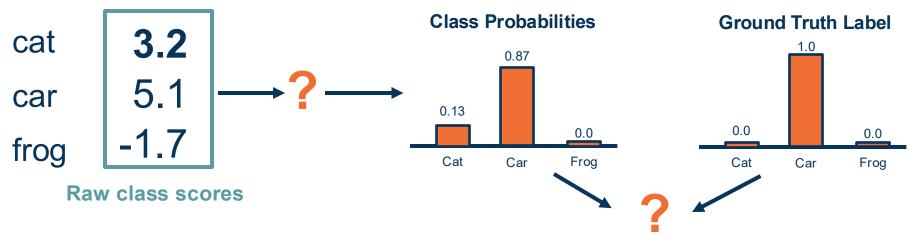
```
def 12_regularized_hinge_loss(x, y, W, reg_coeff):
    data_loss = 0
    # calculate dataset loss
    for i in range(x.shape[0]):
        data_loss += hinge_loss_vec(x[i], y[i], W)

# calculate weight regularization loss
    reg_loss = np.sum(np.square(W)) * reg_coeff

return data_loss + reg_loss
```

What if we want probabilities?

We need a different classifier and a way to compute loss on probability (mismatch)!*



^{*}Technically we can get probability from SVM classifiers too, see Platt scaling

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

 $p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}$

Probabilities must be >= 0

Probabilities must sum to 1

How do we compute the loss?

Softmax

Function

Unnormalized logprobabilities / logits Unnormalized probabilities

Probabilities

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}$$
 Softmax Function

We maximize the probability of $p_{\theta}(y_i|x_i)!$

3.2 0.13 cat softmax 5.1 0.87 car -1.7 frog **Unnormalized log-Predicted** probabilities / logits

Finding a set of weights θ that maximizes the probability of correct prediction: $\underset{\hat{}}{\operatorname{argmax}}\prod p_{\theta}(y_i|x_i)$

This is equivalent to:

$$\underset{\theta}{\operatorname{argmax}} \sum \ln p_{\theta}(y_i|x_i)$$

$$L_i = -\ln p_{\theta}(y_i|x_i) = -\ln \left(\frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}\right) = -\ln(0.13)$$

1. Maximum Likelihood Estimation (MLE):

Choose weights to maximize the likelihood of observed data under a distribution. In this case, the loss function is the Negative Log-Likelihood (NLL).

Probs

(softmax)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}$$
 Softmax Function

We maximize the probability of $p_{\theta}(y_i|x_i)!$

cat
car
5.1
frog
Unnormalized log-probabilities / logits

0.13
0.87
0.00
Predicted Probs

Finding a set of weights θ that maximizes the probability of correct prediction: $\underset{\theta}{\operatorname{argmax}} \prod p_{\theta}(y_i|x_i)$

This is equivalent to:

$$argmax \sum_{\theta} \ln p_{\theta}(y_i|x_i)$$

$$L_i = -\ln p_{\theta}(y_i|x_i) = -\ln \left(\frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}\right) = -\ln(0.13)$$
Negative Log Likelihood (NLL)

(softmax)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_{j} e^{s_j}}$$
 Softmax Function

2. Information theory view

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
 Softmax Function

2. Information theory view

 cat
 3.2
 softmax
 0.13

 car
 5.1
 0.87

 frog
 -1.7
 0.00

 -1.7
 0.00

 -1.7
 0.00

 -1.7
 0.00

 -1.7
 0.00

 -1.7
 0.00

Unnormalized logprobabilities / logits Predicted Probs (softmax)

maximize agreement

Cross Entropy: $H(p,q) = -\sum p(x) \ln q(x)$

Cross Entropy Loss -> NLL

$$H_{i}(p, p_{\theta}) = -\sum_{y \in Y} p(y|x_{i}) \ln p_{\theta}(y|x_{i})$$

$$= -\ln p_{\theta}(y_{i}|x_{i})$$

$$L = \sum H_i(p, p_\theta) = -\sum \ln p_\theta(y_i|x_i) \equiv NLL$$

1.00

0.00

0.00

Correct probs

NLL and CrossEntropy are different loss functions in PyTorch!

CROSSENTROPYLOSS

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [SOURCE]

logits as input (the function will apply softmax & log on top)

NLLLOSS

CLASS torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean') [SOURCE]

Expects log probabilities as input (do softmax yourself!)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
 Softmax Function

Cross-entropy loss:

$$L_i = -\log(p_{\theta}(y_i|x_i))$$

Q: What is the min/max of possible loss L_i?

Infimum is 0, max is unbounded (inf) As $p_{\theta}(y_i, x_i) \rightarrow 0$, $L \rightarrow \inf$

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; \theta)$$

$$p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
 Softmax Function

Cross-entropy loss:

$$L_i = -\log(p_{\theta}(y_i|x_i))$$

Q: At initialization all s will be approximately equal; what is the loss?

 $-\log(1/C)$, e.g. $-\log(1/3) = \log(3) \approx 1.1$

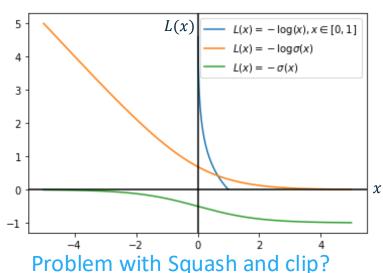
Why this? $p_{\theta}(Y = y_i | X = x_i) =$

Use logistic function as example. Same as general softmax but for binary classification

$$: (;) = \frac{<\%}{1 + <\%}$$

Consider the following three basis for NLL:

- Squash and clip network value (x) to (0, 1)
- (Negative) logistic function
- NLL with logistic function

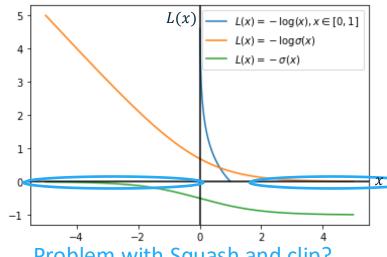


Use logistic function as example. Same as general softmax but for binary classification

$$: (;) = \frac{<\%}{1 + <\%}$$

Consider the following three basis for NLL:

- 1. Squash and clip network value (x) to (0, 1]
- 2. (Negative) logistic function
- 3. NLL with logistic function



Problem with Squash and clip?

No loss, no learning!

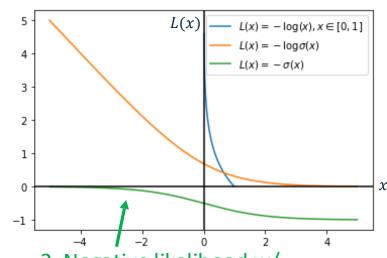
Why this? $p_{\theta}(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_{i} e^{s_j}}$

Use logistic function as example. Same as general softmax but for binary classification

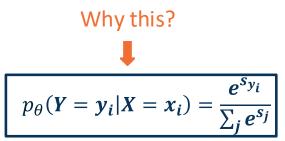
$$: (;) = \frac{<\%}{1 + <\%}$$

Consider the following three basis for NLL:

- 1. Squash and clip network value (x) to (0, 1]
- 2. (Negative) logistic function
- 3. NLL with logistic function



 Negative likelihood w/ logistic function: saturated loss when classifier is very wrong



Use logistic function as example. Same as general softmax but for binary classification

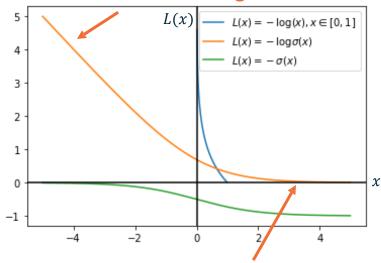
$$: (;) = \frac{<\%}{1 + <\%}$$

Consider the following three basis for NLL:

- 1. Squash and clip network value (x) to (0, 1]
- 2. (Negative) logistic function
- 3. NLL with logistic function

Softmax is a normalization function that behaves well with Cross Entropy Loss.

3. NLL w/ logistic: Strong guidance when classifier is wrong



Only saturate at convergence, e.g. $\sigma(3) \approx 0.95$

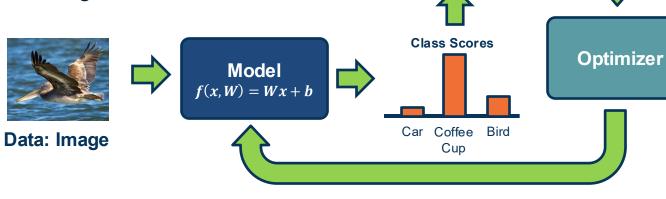
So, what is a loss function?

- In this context, it's a function that scores how well a **model** performs on a task. We often focus on the parameters rather than the hypothesis class.
- If $L(\theta_1, data) < L(\theta_2, data)$, then θ_1 is considered better.
- Losses are different than metrics. Loss functions are designed for optimization, which require properties like differentiability and smoothness.
- Example: CrossEntropy is a loss function for the multi-class classification task. Classification accuracy (how often the model is correct) is the metric.
- Losses can be used as metrics but are often not very interpretable.
- Losses can always be used as metrics, but metrics often cannot be used as loss functions (e.g., classification accuracy is not differentiable).

Summary: SVM and Softmax Classifier

- Loss function: performance measure to improve
 - Find weights that better satisfies the objective
- Multiclass SVM Classifier
 - Predicts class score
 - Hinge loss: "maximum margin" objective: $L_i = \sum_{j \neq y_i} max(0, s_j s_{y_i} + 1)$
- Regularization
 - Prevent overly complex function that only works well on the training set
- Softmax Classifier
 - Predicts class probabilities
 - To train softmax classifiers: use NLL and Cross Entropy Loss

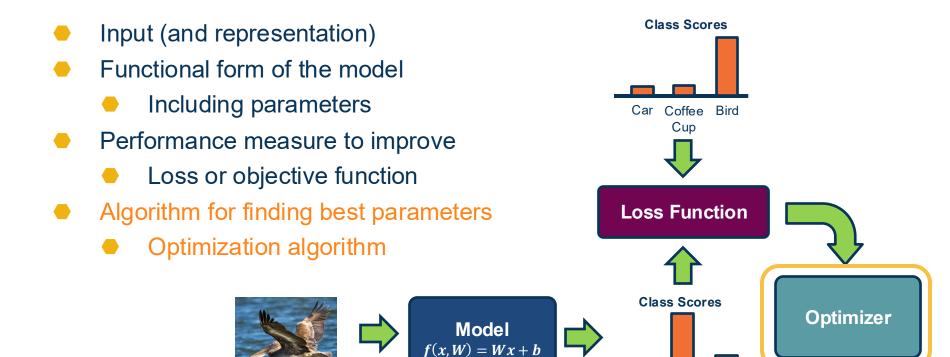
- Input (and representation)
- Functional form of the model
 - Including parameters
- Performance measure to improve
 - Loss or objective function
- Algorithm for finding best parameters
 - Optimization algorithm



Class Scores

Car Coffee Bird Cup

Loss Function



Data: Image

Bird

Car Coffee

Cup

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function I evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~99.7%)

Adapted from from CS 231n slides

Given a model and loss function, finding the best set of weights is a **search problem**

 Find the best combination of weights that minimizes our loss function

Several classes of methods:

- Random search
- Genetic algorithms (population-based search)
- Gradient-based optimization

In deep learning, **gradient-based methods are dominant** although not the only approach possible

w_{11}	w_{12}	• • •	w_{1m}	
w_{21}	w_{22}	• • •	w_{2m}	b 2
	w_{22}	• • •	w_{3m}	b 3

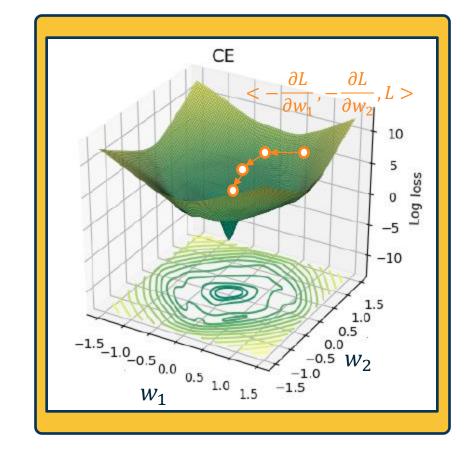
Loss

- 1. Calculate the gradients of a loss function with respect to a set of parameters (w's).
- 2. Update the parameters towards the gradient direction that minimizes the loss.

As weights change, the gradients change as well

 This is often somewhatsmooth locally, so small changes in weights produce small changes in the loss

We can therefore think about iterative algorithms that take current values of weights and modify them a bit



 We can find the steepest descent direction by computing the derivative:

$$\frac{\partial f}{\partial w} = \lim_{h \to 0} \frac{f(w+h) - f(w)}{h}$$

- Gradient is multi-dimensional derivatives
- Notation: $\frac{\partial f}{\partial w}$ is the gradient of f (e.g., a loss function) with respect to variable w (e.g., a weight vector).
- $\frac{\partial f}{\partial w}$ is of the **same shape** as w
- **Intuitively:** Measures how the *output* changes as the variable *w* changes by a very small step size
- Steepest descent direction is the negative gradient
- Gradient descent: Minimize loss by changing parameters towards the negative gradient direction

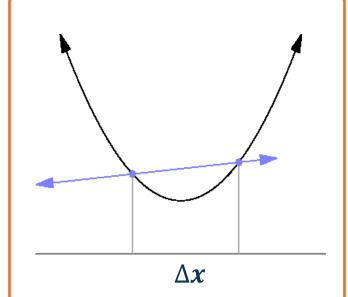


Image and equation from: https://en.wikipedia.org/wiki/Derivative #/media/File:Tangent_animation.gif

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:

```
[?, ?, ?, ?, ?, ?, ?, ...]
```

current W:	W + h (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001 ,	[? ,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25322	, <u>, , , , , , , , , , , , , , , , , , </u>

current W:	W + h (first dim):
[0.34,	[0.34 + 0.0001 ,
-1.11,	-1.11,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25322

gradient dW:

[-2.5,
?,
?,
(1.25322 - 1.25347)/0.0001
= -2.5
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,
?,...]

current W:	W + h (second dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11 + 0.0001 ,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25353	

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dW: [-2.5, 0.6, (1.25353 - 1.25347)/0.0001 = 0.6

current W:	W + h (third dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25347	, ,

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

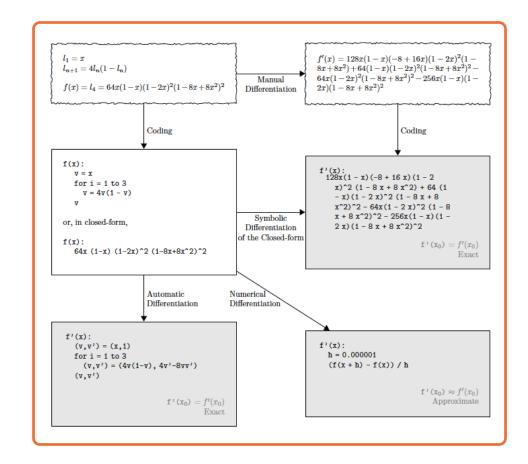
gradient dW: [-2.5, 0.6, (1.25347 - 1.25347)/0.0001 = 0 $\frac{df(x)}{dx} = \lim_{x \to 0} \frac{f(x+h) - f(x)}{f(x+h)}$

Several ways to compute $\frac{\partial L}{\partial w_i}$

- Manual differentiation
- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation

More on autodiff:

https://www.cs.toronto.edu/~rgrosse/courses/csc421_201 9/readings/L06%20Automatic%20Differentiation.pdf



Numerical vs Analytic Gradients

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow, approximate, easy to implement Analytic gradient: fast, exact, error-prone if implemented by yourself

Almost all differentiable functions that you can think of have analytical gradients implemented in popular libraries, e.g., PyTorch, TensorFlow.

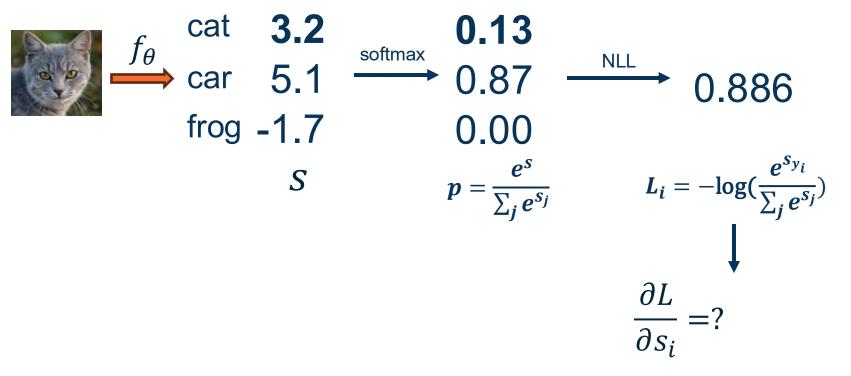
If you want to derive your own gradients, check your implementation with numerical gradient.

This is called a gradient check.

The gradient descent algorithm

- 1. Choose a model: f(x, W) = Wx
- 2. Choose loss function: $L_i = |y Wx_i|^2$
- 3. Calculate partial derivative for each parameter: $\frac{\partial L}{\partial w_i}$
- 4. Update the parameters: $w_i = w_i \frac{\partial L}{\partial w_i}$
- 5. Add learning rate to prevent too big of a step: $w_i = w_i \alpha \frac{\partial L}{\partial w_i}$
- Repeat 3-5

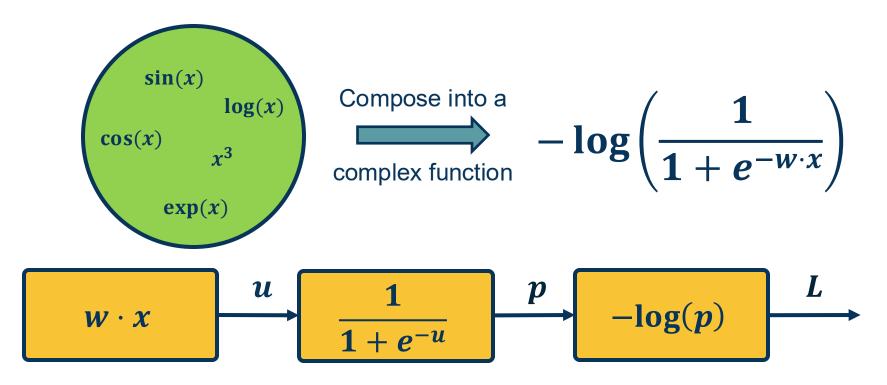
Gradient Descent on Softmax Classifier!



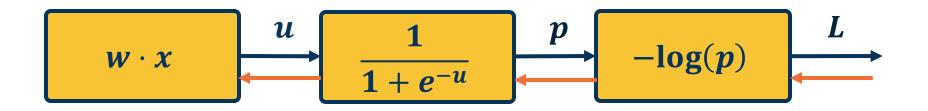
Gradient Descent on Softmax Classifier!

cat 3.2
$$0.13$$
 0.87 0.886 frog -1.7 0.886 0.00 0.87 0.886 0.00 0.886 0.00 0.886 0.887 0.886 0.887 0.87 0

Composing simple functions creates complex analytical gradients



Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun



$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}$$

Next time: Chain rule and Backpropagation!

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

