CS 4644-DL / 7643-A: LECTURE 7 DANFEI XU

Topics:

- Convolutional Neural Networks: Past and Present
- Convolution Layers

Administrative:

- Assignment due today (with 48 hours late period)
- Proposal template and prompt released.
- Proposal due Oct 1th 11:59pm (No Grace Period)
- Start finding a project team if you haven't!

Jacobians

Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$, we have the Jacobian matrix \mathbf{J} of shape $\mathbf{m} \times \mathbf{n}$, where $\mathbf{J}_{i,j} = \frac{\partial f_i}{\partial x_i}$

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_n}{\partial x_n} \
abla^{\mathrm{T}} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

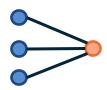
If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

changes by a small amount, how much will y change?



Vector to Vector

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

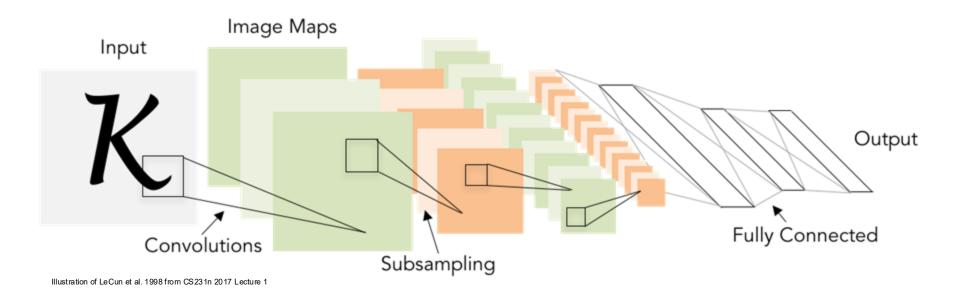
$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \qquad \frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_n}{\partial x_m}$$

For each element of x, if it changes by a small amount, how much will each element of y change?

Summary (Lecture 5 – here):

- Neural networks, activation functions
- NNs as Universal Function Approximators
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

Today: Convolutional Neural Networks



A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

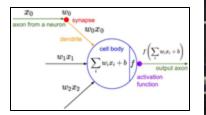
The machine was connected to a camera that used 20×20 photocells to produce a 400-pixel image.

recognized letters of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

update rule:

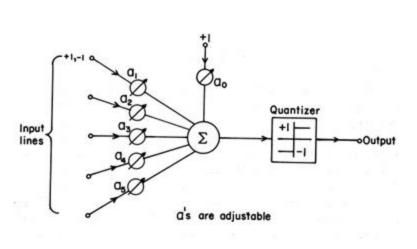
$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$$



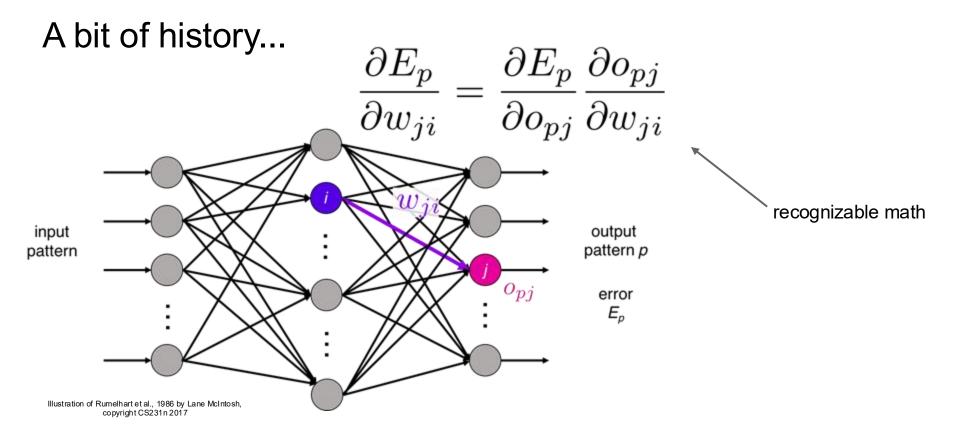
Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

A bit of history...



Widrow and Hoff, ~1960: Adaline/Madaline



Rumelhart et al., 1986: First time back-propagation became popular

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

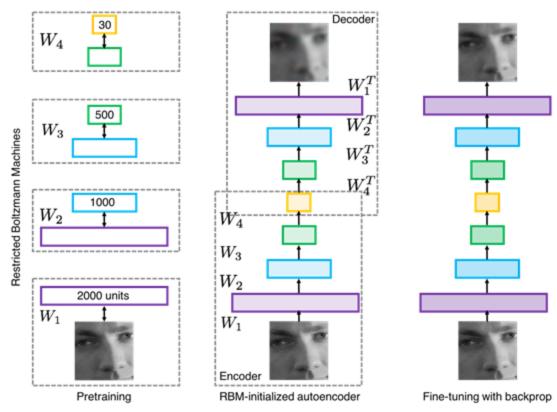
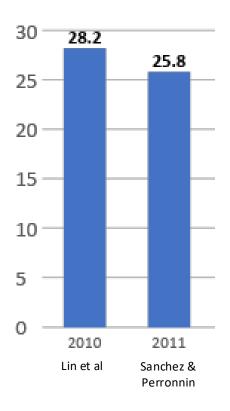


Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

A bit of history... ImageNet (Deng et al., 2009)

The **ImageNet** dataset contains 14,197,122 annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Elements of Deep Learning (circa 2011)

Algorithms

(Stochastic) Gradient Descent, Backpropagation

Architectures / Models

(Deep) Convolutional Neural Networks

Data

CIFAR10, CIFAR100, Pascal VOC, ImageNet

Computation Hardware

GPU (NVIDIA GeForce 600 series)

A bit of history:

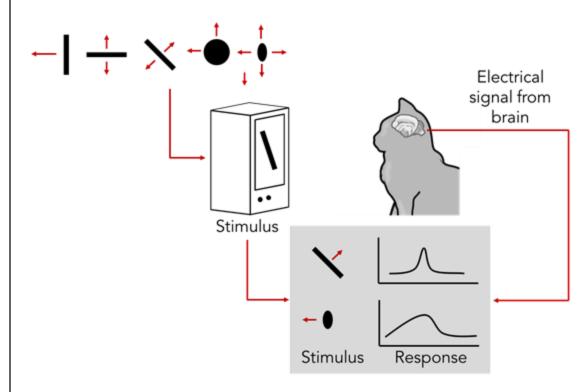
Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...



<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

Hierarchical organization

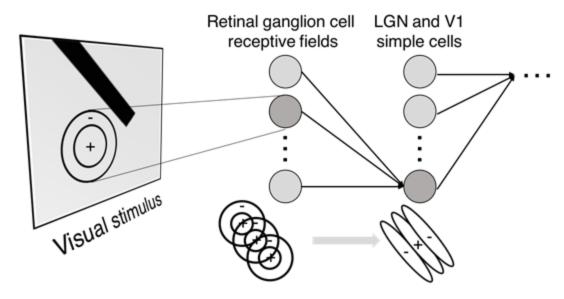
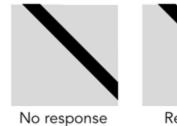


Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

Simple cells: Response to light orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells: response to movement with an end point

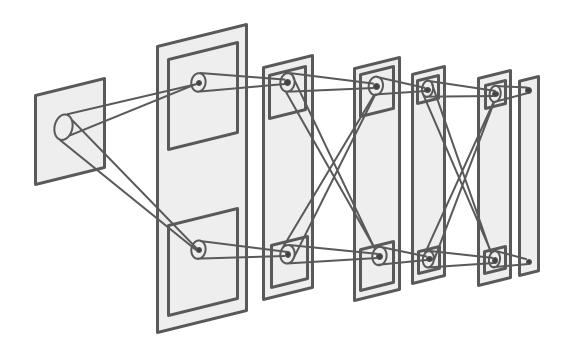


Response (end point)

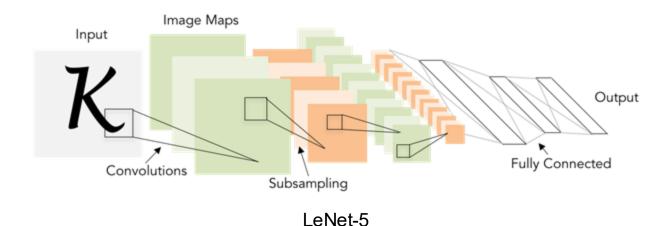
A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling



A bit of history: **Gradient-based learning applied to document recognition**[LeCun, Bottou, Bengio, Haffner 1998]



A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

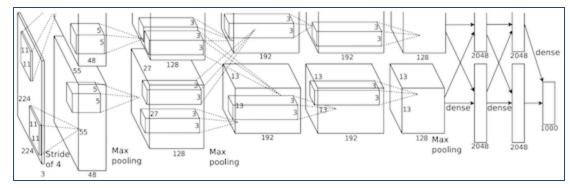
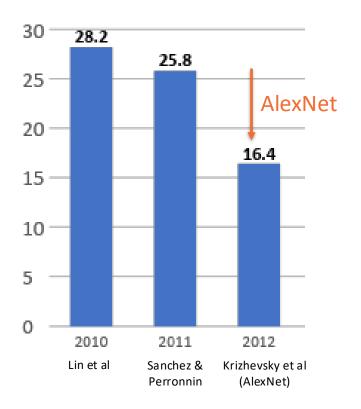


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

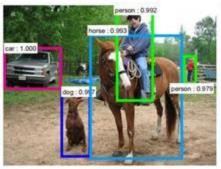
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

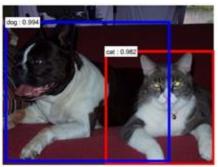


Classification Retrieval

Figures copyright Alex Krizhevsky, Ilva Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Detection

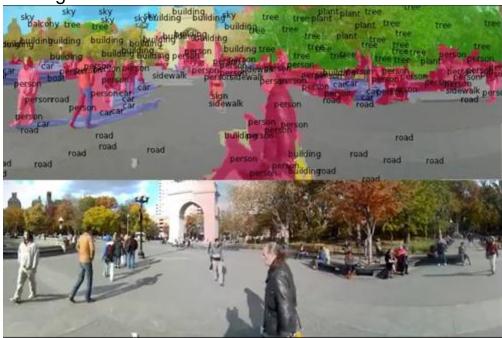




Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

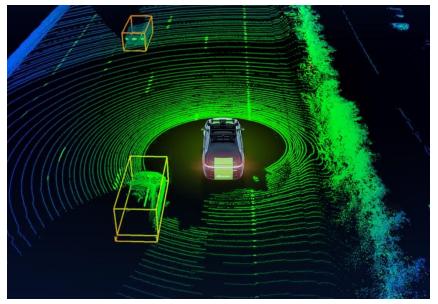
Segmentation

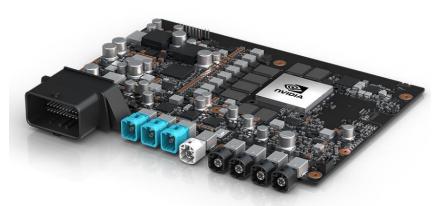


Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Autonomous Driving: GPUs & specialized chips are fast and compact enough for on-board compute!

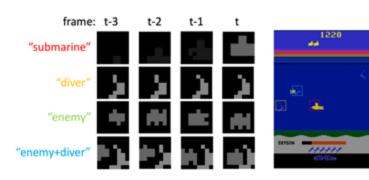


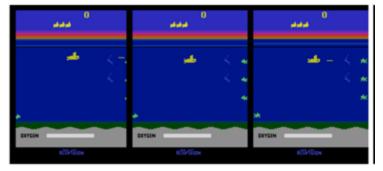


https://www.nvidia.com/en-us/self-driving-cars/

[Toshev, Szegedy 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

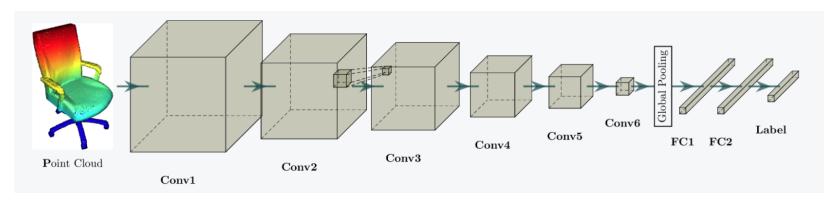




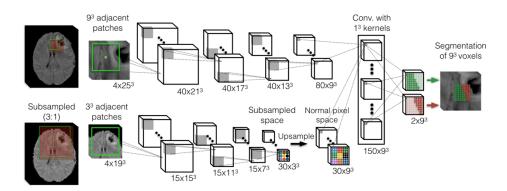
[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

Generalized convolution: spatial convolution

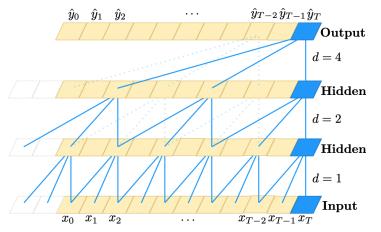


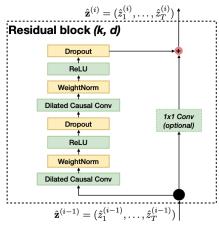
Choi et al., 2019

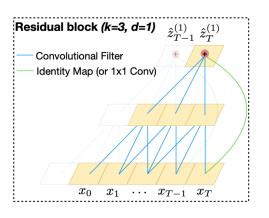


Kamnitsas et al., 2015

Generalized convolution: temporal convolution

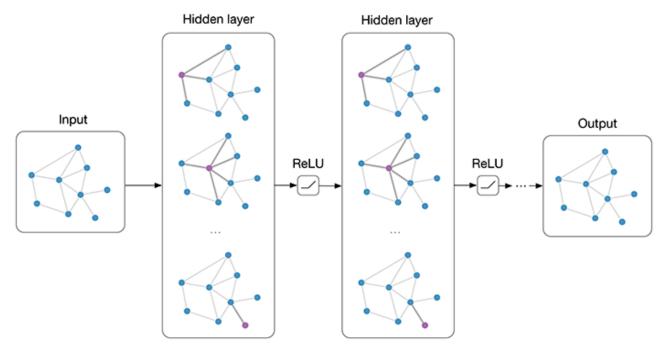






Bai et al., 2018

Generalized convolution: graph convolution



Kipf et al., 2017

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

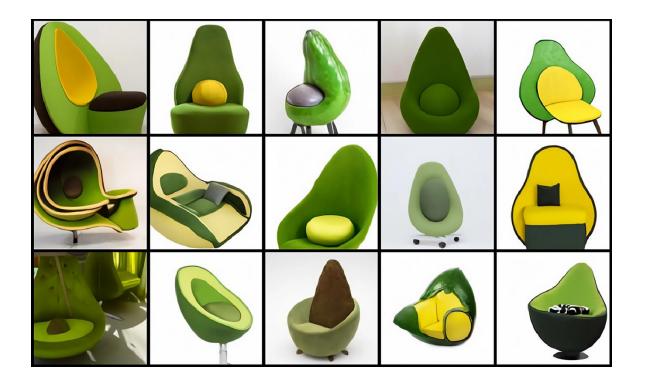
Image-to-text

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015] [Radford, 2021]

All images are CC0 Public domain:

https://pixabay.com/en/lugaage-antique-cat-1643010/ https://pixabay.com/en/lugaage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltak2



"An avocado armchair"

Text-to-Image

[Reed, 2016] [Zhang, 2017] [Johnson, 2018] [Ramesh, 2021] [Frans, 2021] [Saharia, 2022] [Ramesh, 2022]

Convolutional Neural Networks

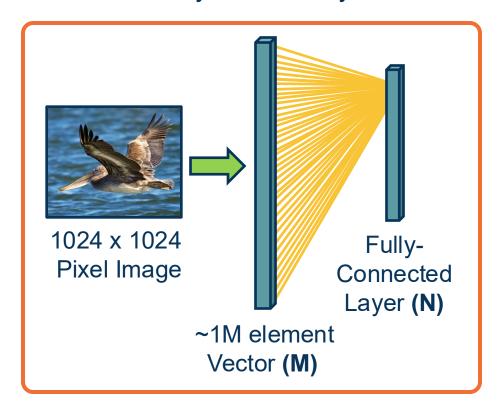
Convolution Operations

Convolution as a Neural Network Operator

Parameter Sharing

Convolution Layer

The connectivity in linear layers doesn't always make sense



Q: How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed & slower to train / inference

Is this necessary?

Image features are spatially localized!

- Smaller features repeated across the image
 - Edges
 - Color
 - Motifs (corners, etc.)
- No reason to believe one feature tends to appear in a fixed location.
 Need to search in entire image.

Can we induce a *bias* in the design of a neural network layer to reflect this?

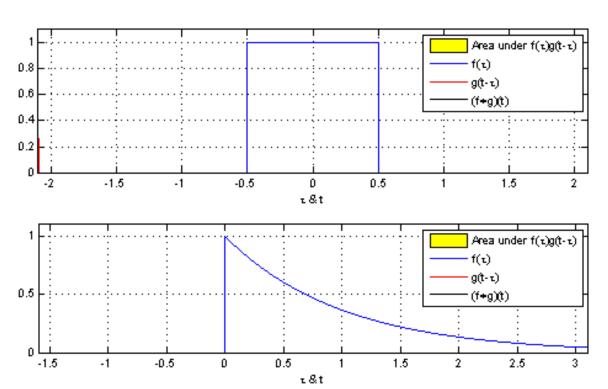
Convolution: A 1D Visual Example

Input function: *f*()

Kernel/filter function: g()

Convolution: f * g()

$$(fst g)(t):=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au.$$



From https://en.wikipedia.org/wiki/Convolution

Convolution

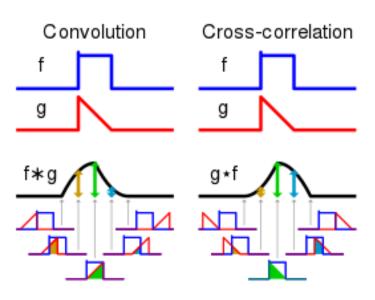
$$(fst g)(t):=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au.$$

1-D Convolution is defined as the **integral** of the **product** of two functions after one is reflected about the y-axis and shifted.

Intuitively: given function f and filter g. How similar is g(-x) with the part of f(x) that it's operating on.

Cross-correlation is convolution without the y-axis reflection.

For ConvNets, we don't flip filters to improve efficiency, so we are really using **Cross-Correlation Nets!**



From https://en.wikipedia.org/wiki/Convolution

Convolution in Computer Vision (non-Deep)

1 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Convolution with Sobel Filter (Edge Detection)

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \ \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A} \ \end{pmatrix}$$

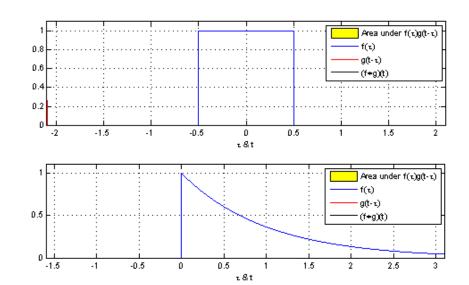
Intuition for pattern recognition and learning using convolution

g(): filter / pattern template

f(): signal / observed data

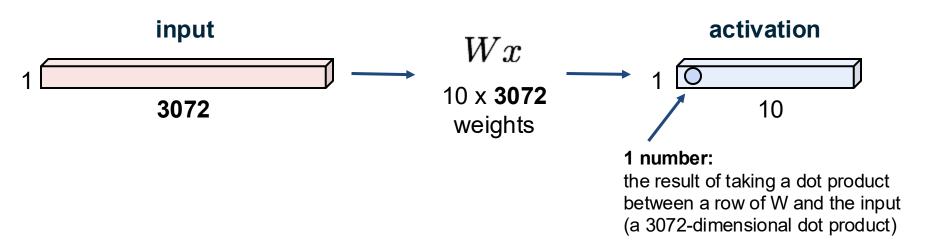
f*g(): how well data matches with the template

- g() as the weights to learn
- f() as the input to the layer (e.g., images / features) From https://en.wikipedia.org/wiki/Convolution
- f*g() as the output of the layer (result of convolution)
- Discrete instead of continuous convolution (sum instead of integral)
- g() and f() may be N-dimensional, where $N \ge 1$

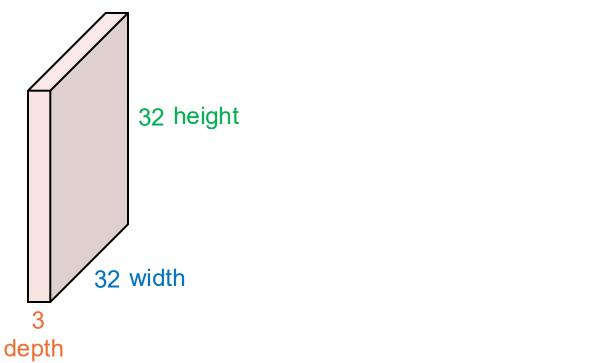


Fully Connected Layer

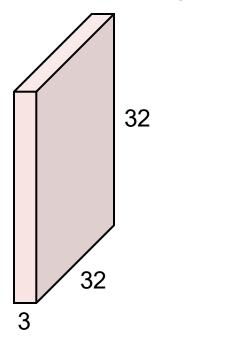
32x32x3 image -> stretch to 3072 x 1



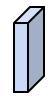
32x32x3 image -> preserve spatial structure



32x32x3 image

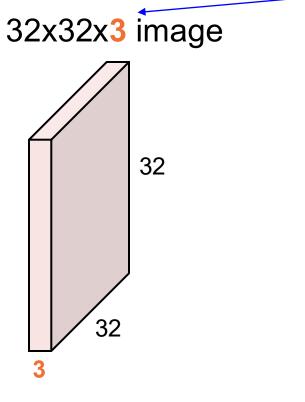


5x5x3 filter

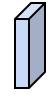


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products at each location"

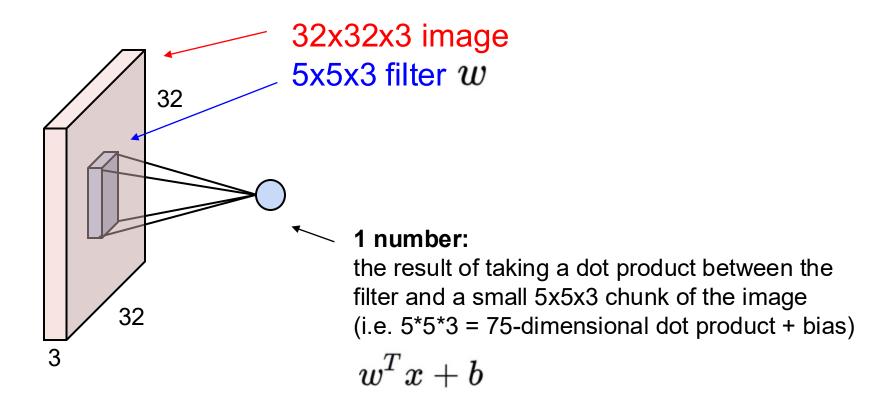
Filters always extend the full depth of the input volume

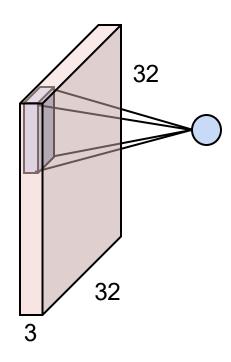


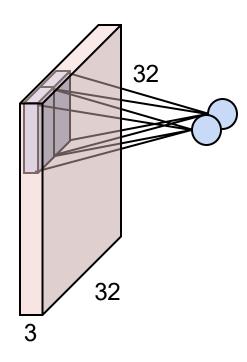
5x5x3 filter

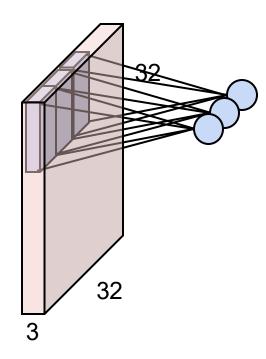


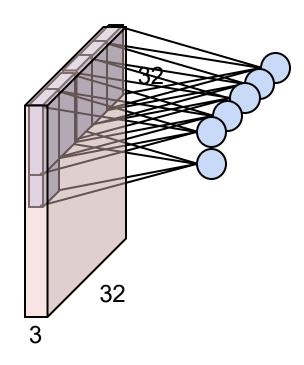
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"



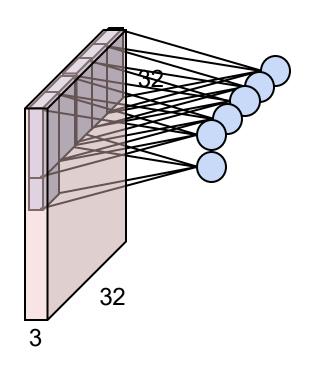




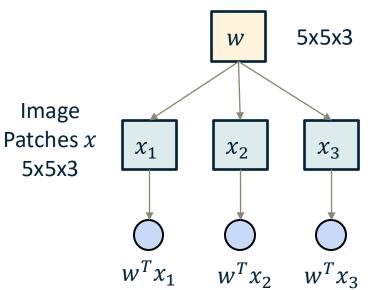




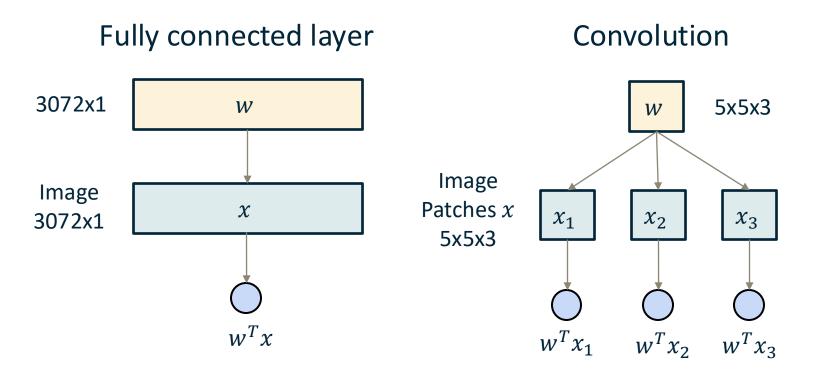
Parameter Sharing



The same conv kernel applied across spatial locations!

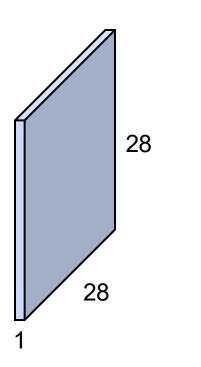


Parameter Sharing

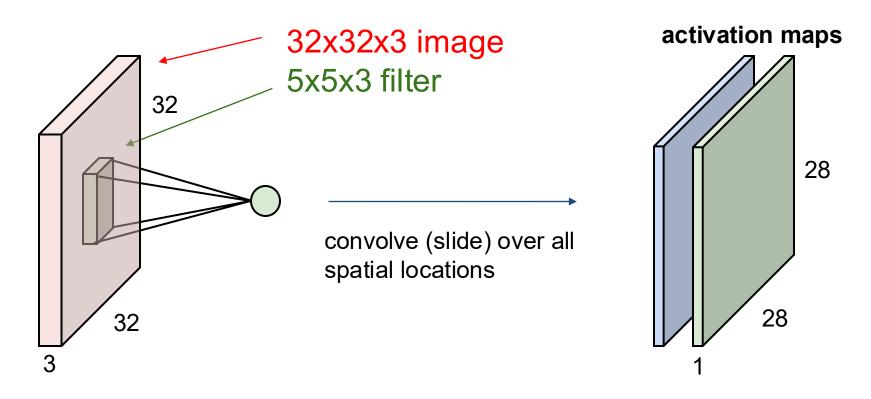




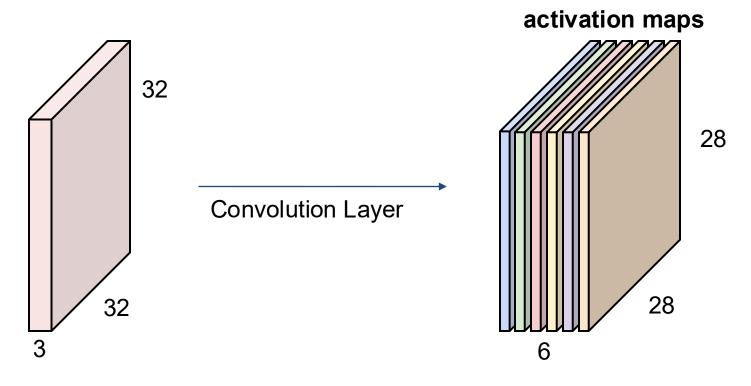
activation map



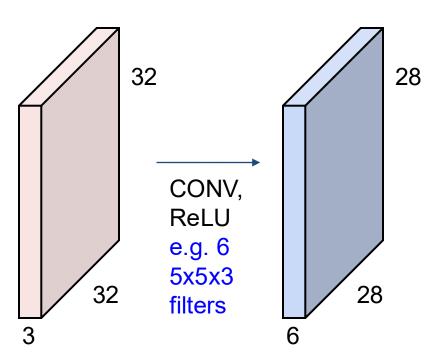
consider a second, green filter

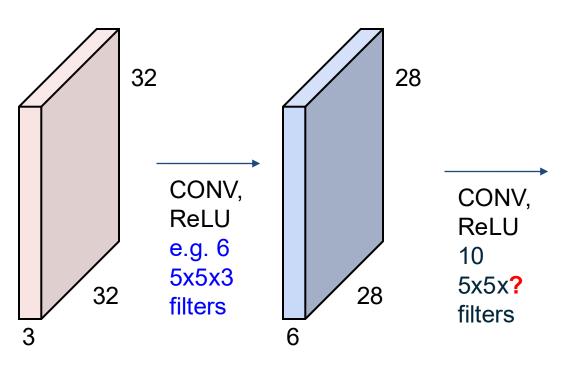


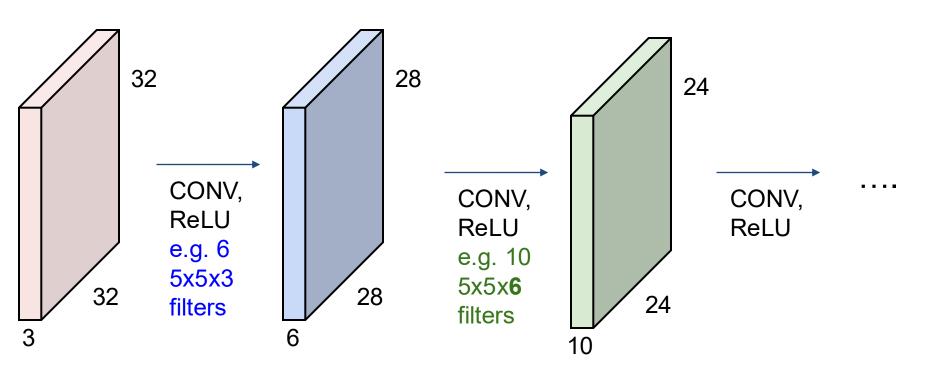
For example, if we had **6** 5x5 filters, we'll get 6 separate activation maps:

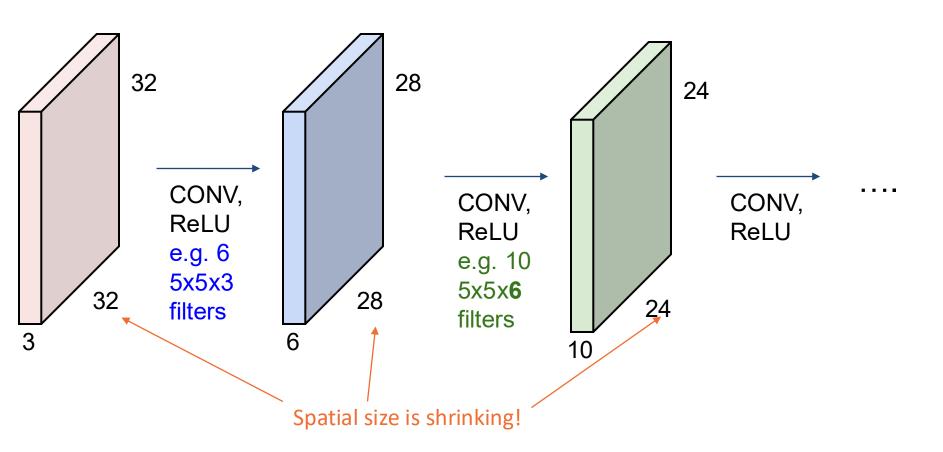


We stack these up to get a "new image" of size 28x28x6!

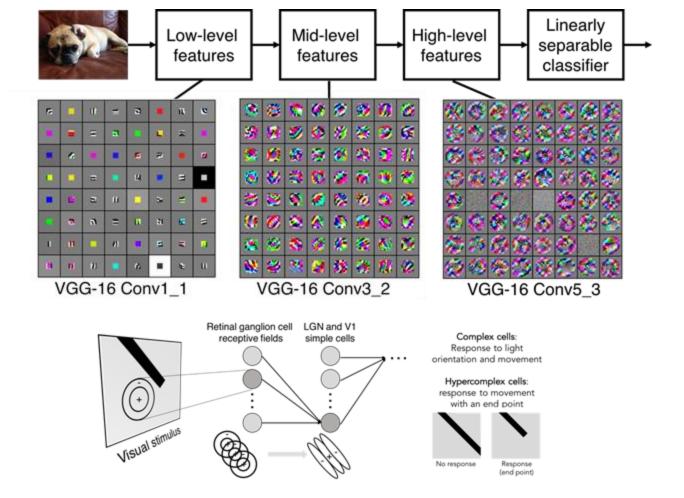


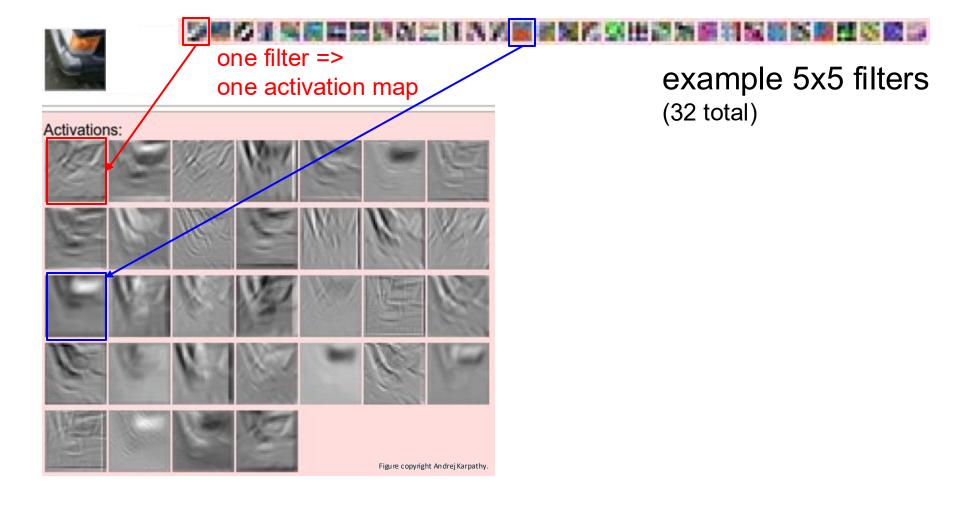




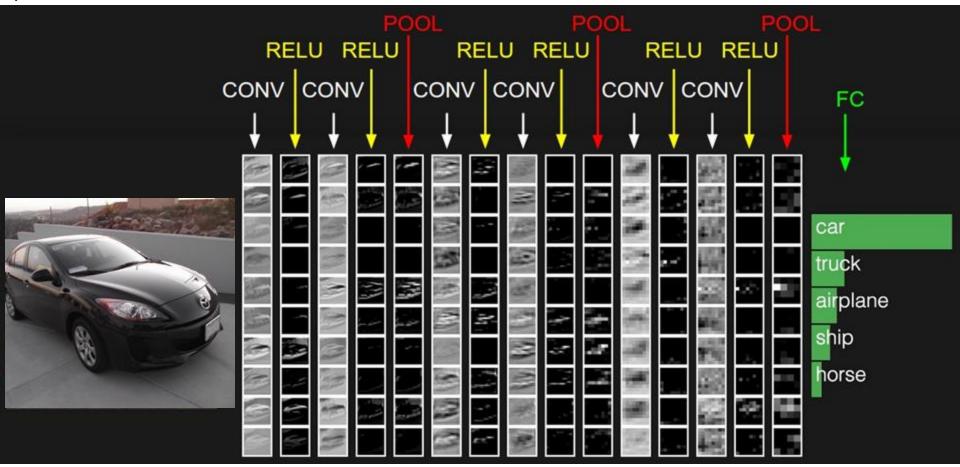


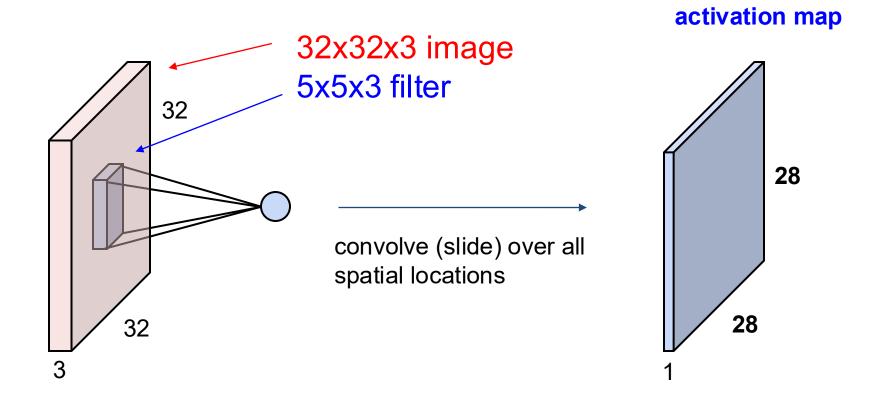
Preview





preview:





Conv2D in PyTorch

Conv2d

What are these?

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

7x7 input (spatially) assume 3x3 filter

	1		

7x7 input (spatially) assume 3x3 filter

7

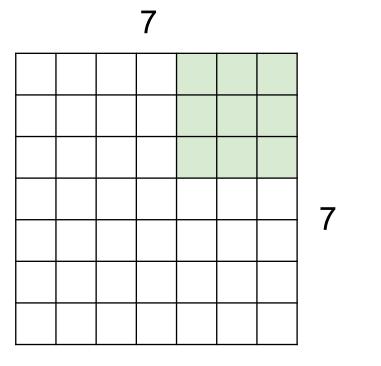
	/		

7x7 input (spatially) assume 3x3 filter

The # of grid that the filter shifts is called **stride**.

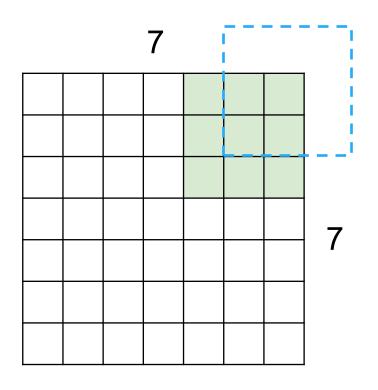
E.g., here we have stride = 1

7x7 input (spatially) assume 3x3 filter with stride = 1



7x7 input (spatially) assume 3x3 filter with stride = 1

=> 5x5 output



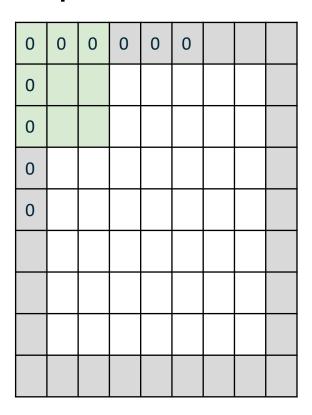
7x7 input (spatially) assume 3x3 filter with stride = 1

=> 5x5 output

But what about the features at the border?

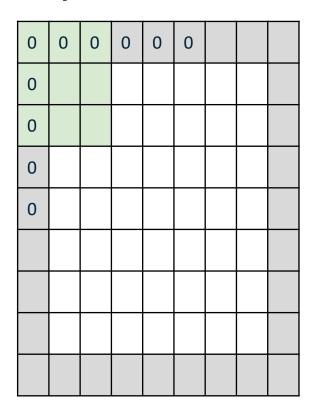
Ideally the filter should be centered wrt the input signal!

In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

In practice: Common to zero pad the border



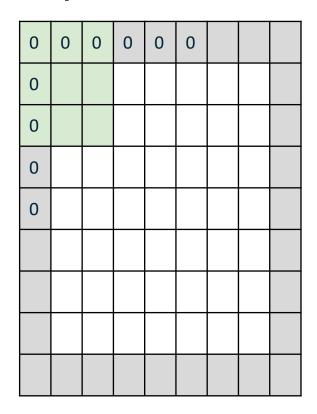
e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

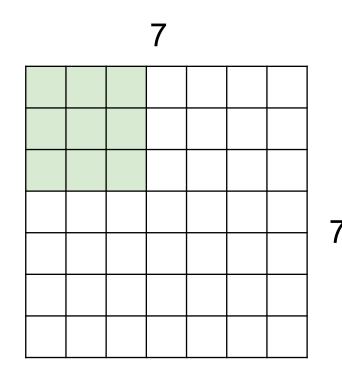
```
N = input dimension

P = padding size

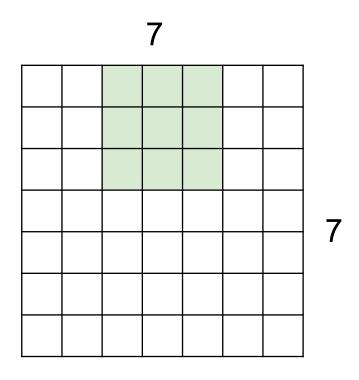
F = filter size

Output size = (N - F + 2P) / stride + 1

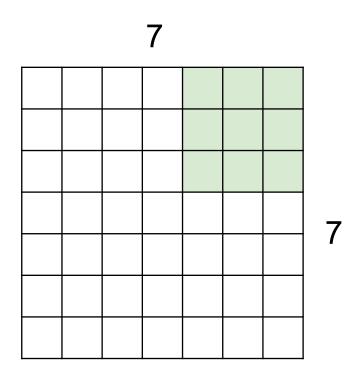
= (7 - 3 + 2 * 1) / 1 + 1 = 7
```



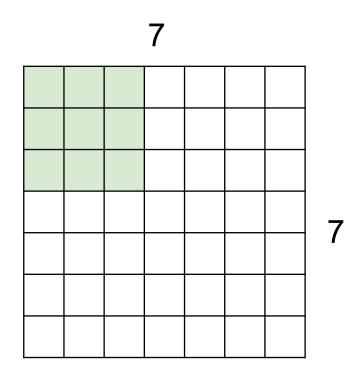
7x7 input (spatially) assume 3x3 filter applied with stride 2



7x7 input (spatially) assume 3x3 filter applied with stride 2



7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!



7x7 input (spatially) assume 3x3 filter applied with stride 3?

IN	N	
----	---	--

	F		
Ш			

Output size:

(N - E) / stride -

(N - F) / stride + 1

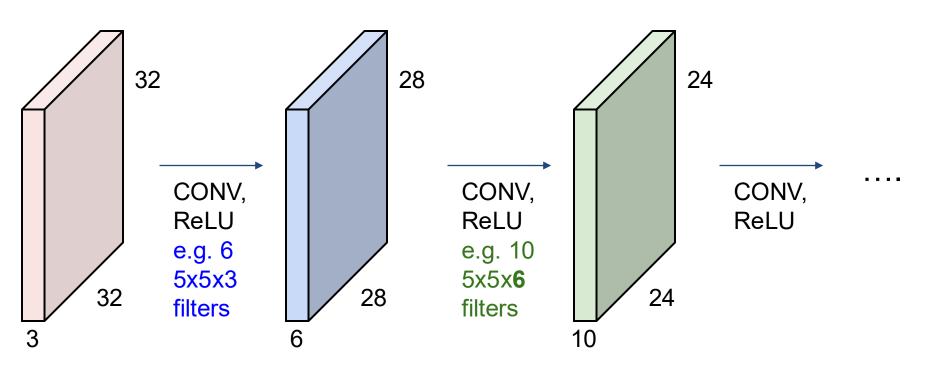
e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

We use floor division to calculate output size: (7-3) // 3 + 1 = 2

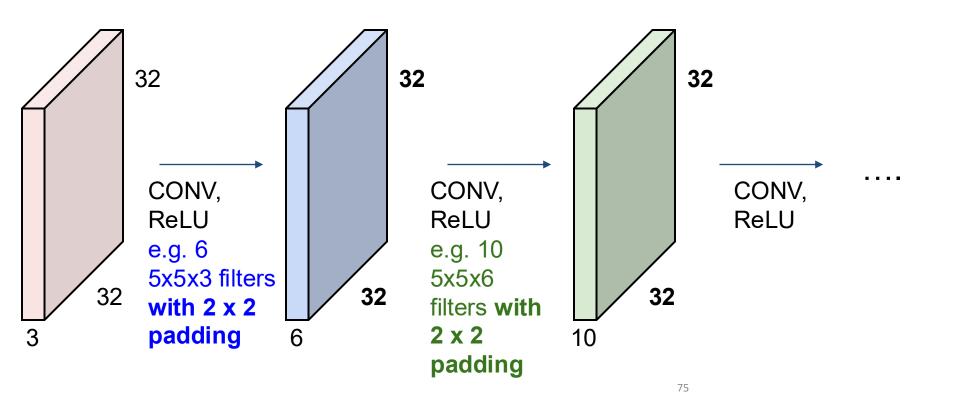
Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.



Remember back to...

With padding, we can keep the same spatial feature dimension throughout the convolution layers.



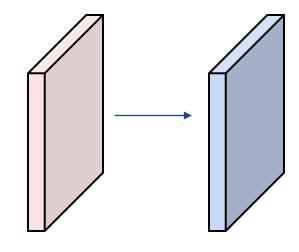
Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2

Output volume size: ?

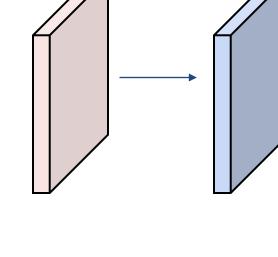
$$(N - F + 2P) / stride + 1$$



Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2



Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

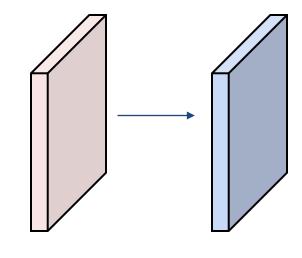
32x32x10

Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2

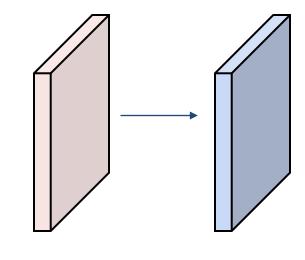
Number of parameters in this layer?



Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2



Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

Convolution layer: summary

Let's assume input is $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of $W_2 \times H_2 \times K$ where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Convolution layer: summary

Common settings:

Let's assume input is $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Conv layer needs 4 hyperparameters: - Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of $W_2 \times H_2 \times K$ where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

-
$$F = 5$$
, $S = 2$, $P = ?$ (whatever fits)

-
$$F = 1$$
, $S = 1$, $P = 0$

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size **F**
- The stride S
- The zero padding P

Conv2d

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, V_{\rm out})$ can be precisely described as:

$$\mathrm{out}(N_i, C_{\mathrm{out}_j}) = \mathrm{bias}(C_{\mathrm{out}_i}) + \sum_{k=0}^{C_{\mathrm{o}}-1} \mathrm{weight}(C_{\mathrm{out}_j}, k) \star \mathrm{input}(N_i, k)$$

where \star is the valid 2D <u>cross-correlation</u> operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

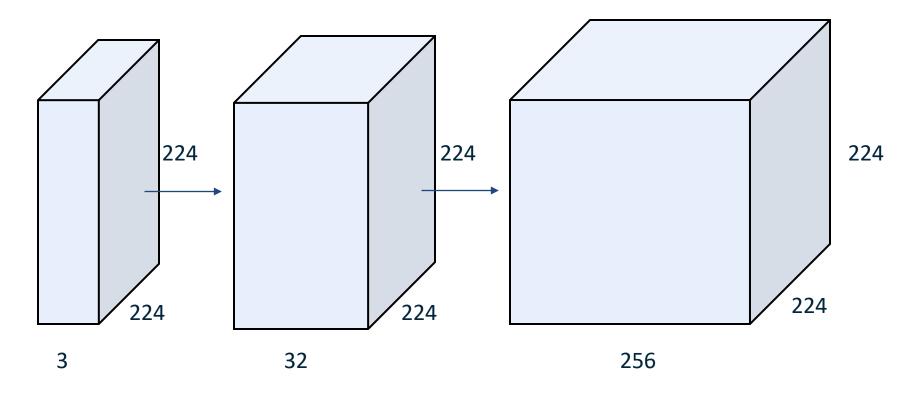
- . stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm, it is harder to describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs, in_channels and out_channels must both be divisible by groups. For example,
 - At groups=1, all inputs are convolved to all outputs.
 - At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
 - At groups• in_channels , each input channel is convolved with its own set of filters, of size: $\left[\frac{C_{in}}{C_{in}}\right]$.

The parameters kernel_size, stride, padding, dilation can either be:

- a single int in which case the same value is used for the height and width dimension
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension

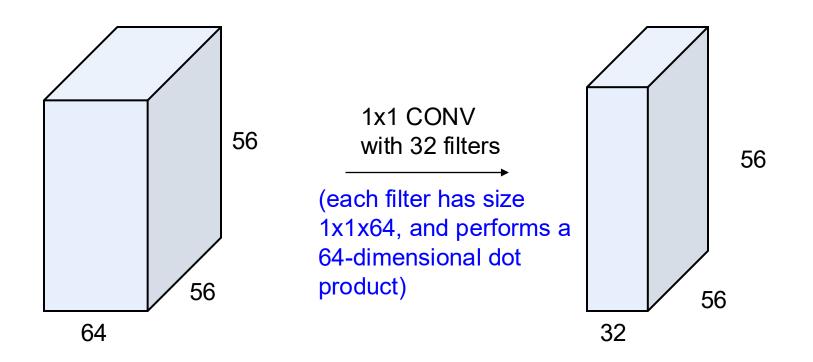
PyTorch is licensed under BSD 3-clause.

Conv features can grow really big really quickly...

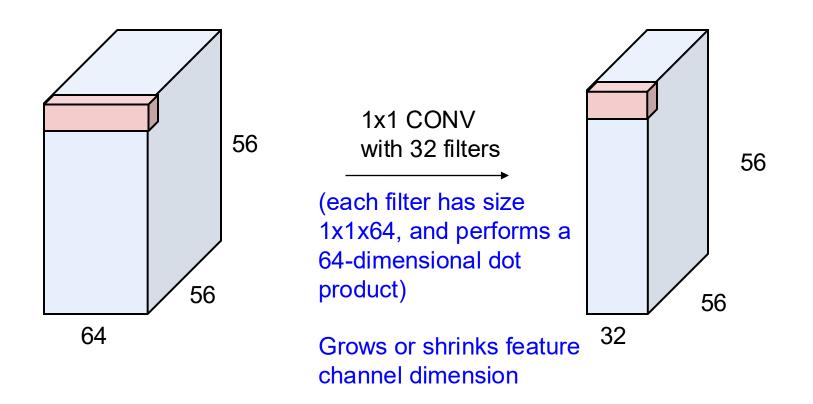


~12million fp!

Solution 1: 1x1 Convolution

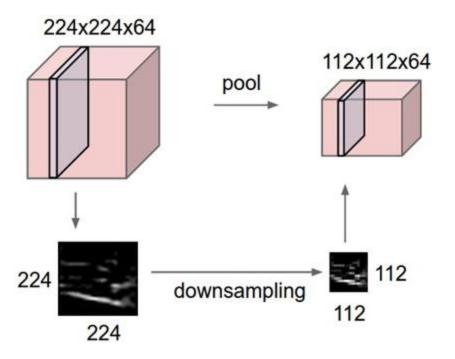


Solution 1: 1x1 Convolution



Solution 2: Pooling (downsampling)

- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:



MAX POOLING

Single depth slice

4 6 3 3

max pool with 2x2 filters and stride 2

6	8
3	4

- Intuitively, only forward the most important features in the region.
- Also improve spatial invariance (output is agnostic to where the max value comes from)

AVG POOLING

Single depth slice

x 5

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

average pool with 2x2 filters and stride 2

3.25	5.25
2	2

У

Pooling layer: summary

Let's assume input is $W_1 \times H_1 \times C$ Pooling layer needs 2 hyperparameters:

- The spatial extent **F** (e.g., 2)
- The stride **S** (e.g., 2)

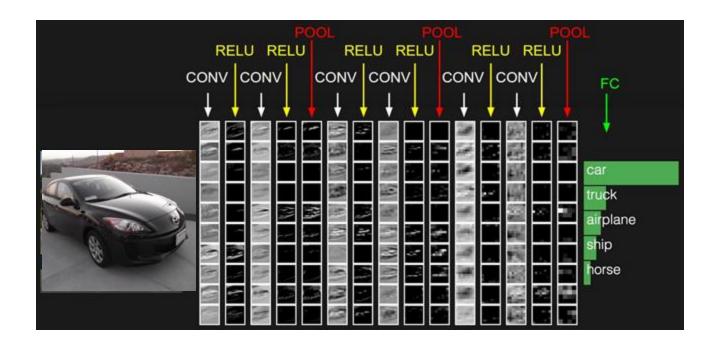
This will produce an output of $W_2 \times H_2 \times C$ where:

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

Number of parameters?

0

A canonical (shallow) convolutional neural net



Next Time:

Convolutional Neural Nets!