# **CS 4644-DL / 7643-A: LECTURE 7 DANFEI XU**

#### Topics:

- Convolutional Neural Networks: Past and Present
- Convolution Layers

#### Administrative:

- Assignment due today (with 48 hours late period)
- Proposal template and prompt released.
- Proposal due Oct 1<sup>th</sup> 11:59pm (No Grace Period)
- Start finding a project team if you haven't!

#### **Jacobians**

Given a function  $f: \mathbb{R}^n \to \mathbb{R}^m$ , we have the Jacobian matrix  $\mathbf{J}$  of shape  $\mathbf{m} \times \mathbf{n}$ , where  $\mathbf{J}_{i,j} = \frac{\partial f_i}{\partial x_i}$ 

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix} 
abla^{\mathrm{T}} f_1 \ dots \ 
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ 
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_n}{\partial x_n} \ 
abla^{\mathrm{T}} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

## Recap: Vector derivatives

## Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

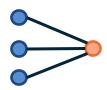


## Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

changes by a small amount, how much will y change?



## Vector to Vector

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \qquad \frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_n}{\partial x_m}$$

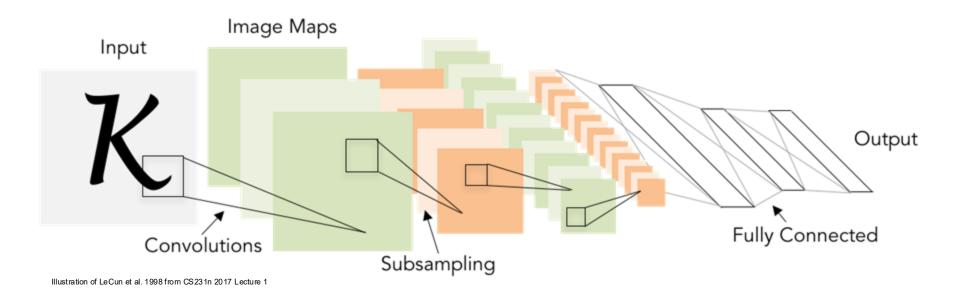
For each element of x, if it changes by a small amount, how much will each element of y change?



### Summary (Lecture 5 – here):

- Neural networks, activation functions
- NNs as Universal Function Approximators
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

## Today: Convolutional Neural Networks



## A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

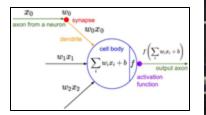
The machine was connected to a camera that used 20×20 photocells to produce a 400-pixel image.

recognized letters of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

#### update rule:

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$$

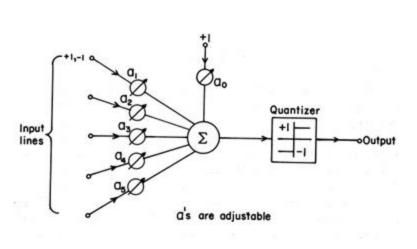


Frank Rosenblatt, ~1957: Perceptron



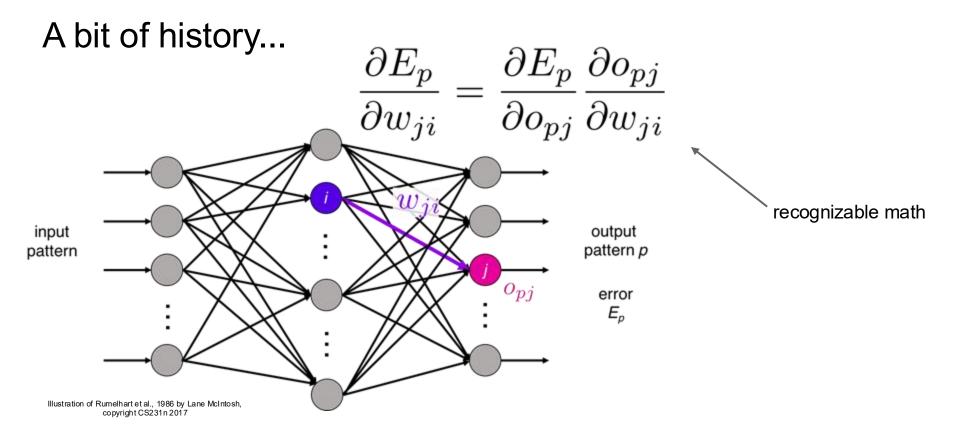
This image by Rocky Acosta is licensed under CC-BY 3.0

## A bit of history...





Widrow and Hoff, ~1960: Adaline/Madaline



Rumelhart et al., 1986: First time back-propagation became popular

## A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

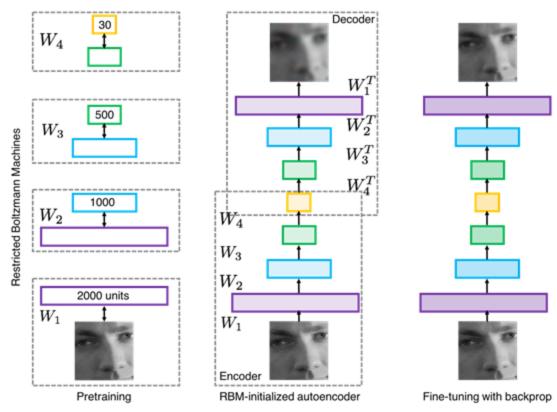


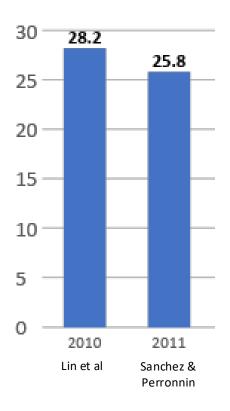
Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

## A bit of history... ImageNet (Deng et al., 2009)



The **ImageNet** dataset contains 14,197,122 annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

## ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners





## Elements of Deep Learning (circa 2011)

### Algorithms

(Stochastic) Gradient Descent, Backpropagation

#### Architectures / Models

(Deep) Convolutional Neural Networks

#### Data

CIFAR10, CIFAR100, Pascal VOC, ImageNet

#### **Computation Hardware**

GPU (NVIDIA GeForce 600 series)

## A bit of history:

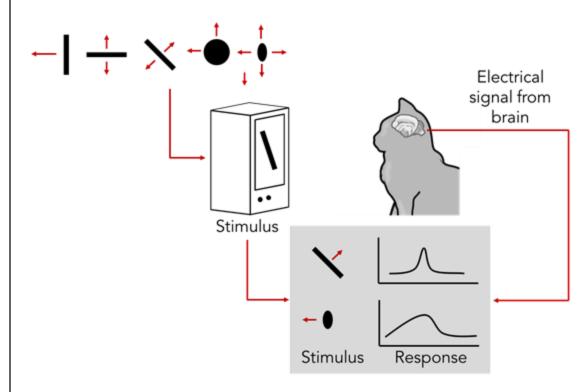
# Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...



<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

## Hierarchical organization

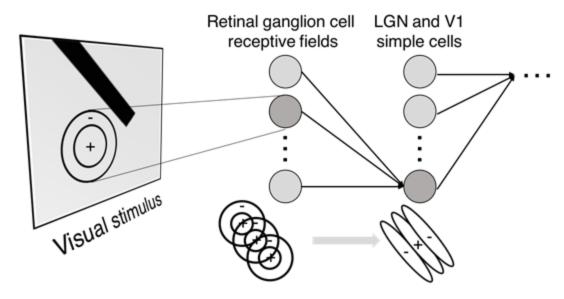
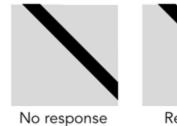


Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

#### Simple cells: Response to light orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells: response to movement with an end point



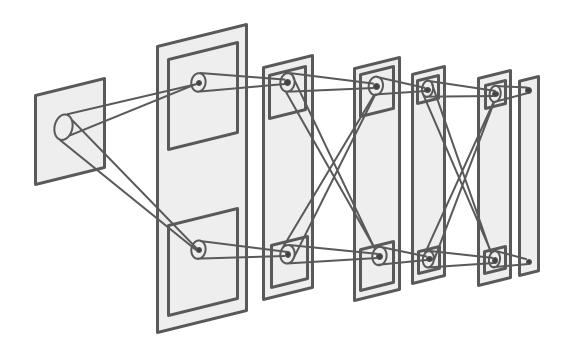


Response (end point)

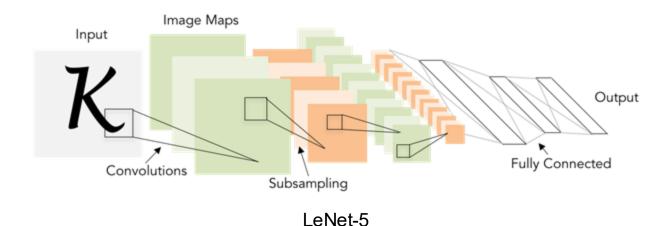
## A bit of history:

# **Neocognitron** [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling



# A bit of history: **Gradient-based learning applied to document recognition**[LeCun, Bottou, Bengio, Haffner 1998]



## A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]



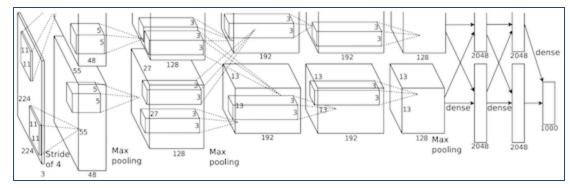
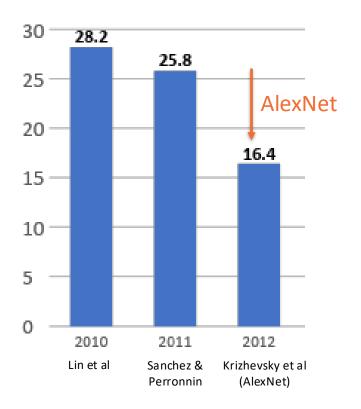


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

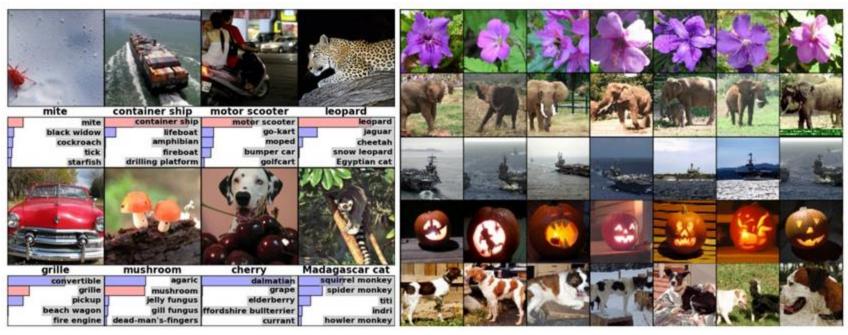
"AlexNet"

#### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



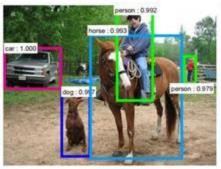


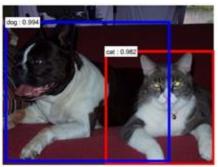
Classification Retrieval



Figures copyright Alex Krizhevsky, Ilva Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

#### **Detection**





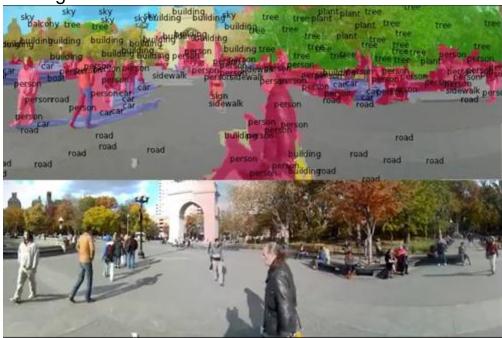




Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

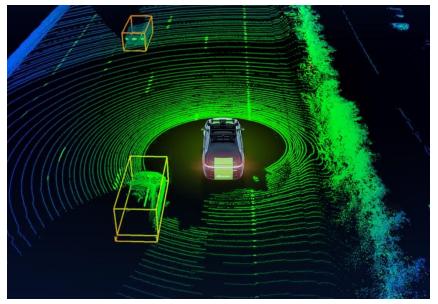
Segmentation



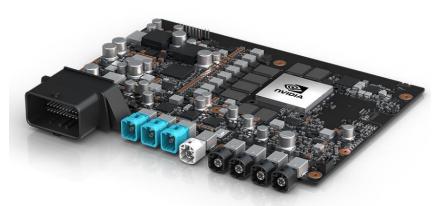
Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

**Autonomous Driving:** GPUs & specialized chips are fast and compact enough for on-board compute!





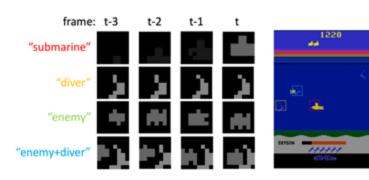


https://www.nvidia.com/en-us/self-driving-cars/

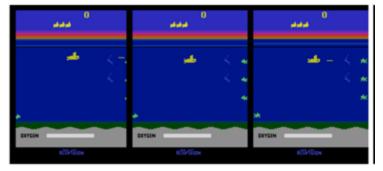


[Toshev, Szegedy 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.



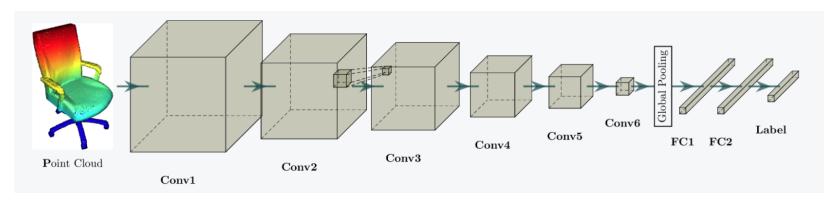




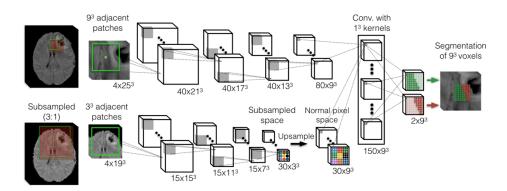
[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

#### Generalized convolution: spatial convolution

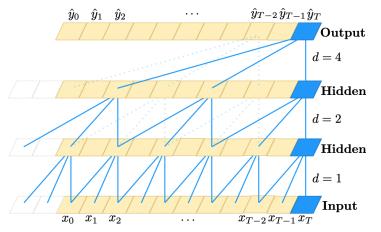


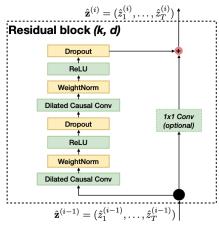
Choi et al., 2019

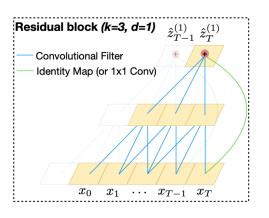


Kamnitsas et al., 2015

#### Generalized convolution: temporal convolution

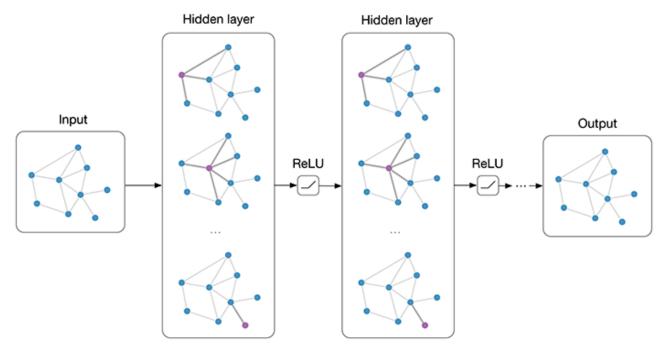






Bai et al., 2018

Generalized convolution: graph convolution



Kipf et al., 2017

#### No errors



A white teddy bear sitting in the grass



A man riding a wave on top of a surfboard

#### Minor errors



A man in a baseball uniform throwing a ball



A cat sitting on a suitcase on the floor

#### Somewhat related



A woman is holding a cat in her hand



A woman standing on a beach holding a surfboard

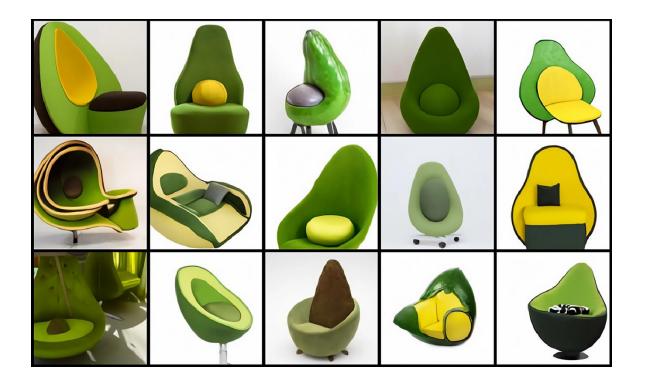
## Image-to-text

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015] [Radford, 2021]

#### All images are CC0 Public domain:

https://pixabay.com/en/lugaage-antique-cat-1643010/ https://pixabay.com/en/lugaage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltak2



#### "An avocado armchair"

## Text-to-Image

[Reed, 2016] [Zhang, 2017] [Johnson, 2018] [Ramesh, 2021] [Frans, 2021] [Saharia, 2022] [Ramesh, 2022]

## Convolutional Neural Networks

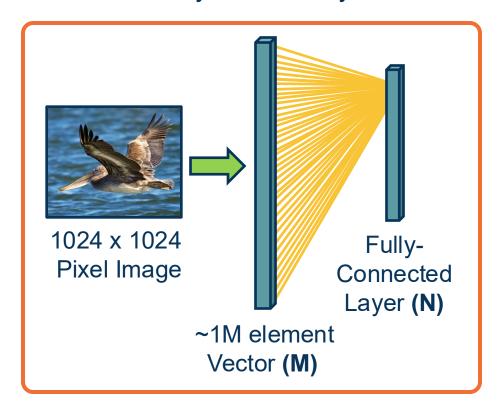
**Convolution Operations** 

Convolution as a Neural Network Operator

Parameter Sharing

Convolution Layer

#### The connectivity in linear layers doesn't always make sense



Q: How many parameters?

M\*N (weights) + N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed & slower to train / inference

Is this necessary?



## Image features are spatially localized!

- Smaller features repeated across the image
  - Edges
  - Color
  - Motifs (corners, etc.)
- No reason to believe one feature tends to appear in a fixed location.
   Need to search in entire image.



Can we induce a *bias* in the design of a neural network layer to reflect this?



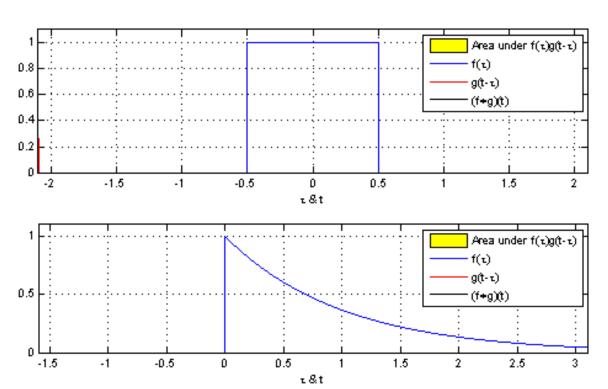
#### Convolution: A 1D Visual Example

Input function: *f*()

Kernel/filter function: g()

Convolution: f \* g()

$$(fst g)(t):=\int_{-\infty}^{\infty}f( au)g(t- au)\,d au.$$



From https://en.wikipedia.org/wiki/Convolution

#### Convolution

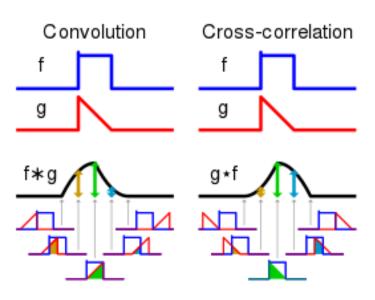
$$(fst g)(t):=\int_{-\infty}^{\infty}f( au)g(t- au)\,d au.$$

1-D Convolution is defined as the **integral** of the **product** of two functions after one is reflected about the y-axis and shifted.

**Intuitively**: given function f and filter g. How similar is g(-x) with the part of f(x) that it's operating on.

**Cross-correlation** is convolution without the y-axis reflection.

For ConvNets, we don't flip filters to improve efficiency, so we are really using **Cross-Correlation Nets!** 



From https://en.wikipedia.org/wiki/Convolution



#### **Convolution in Computer Vision (non-Deep)**







| 1 273 | 1 | 4  | 7  | 4  | 1 |
|-------|---|----|----|----|---|
|       | 4 | 16 | 26 | 16 | 4 |
|       | 7 | 26 | 41 | 26 | 7 |
|       | 4 | 16 | 26 | 16 | 4 |
|       | 1 | 4  | 7  | 4  | 1 |





Convolution with Sobel Filter (Edge Detection)

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \ \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A} \ \end{pmatrix}$$

#### Intuition for pattern recognition and learning using convolution

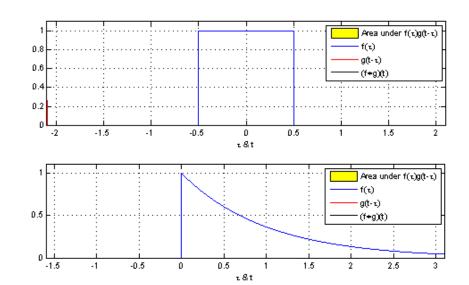
g(): filter / pattern template

f(): signal / observed data

f\*g(): how well data matches with the template

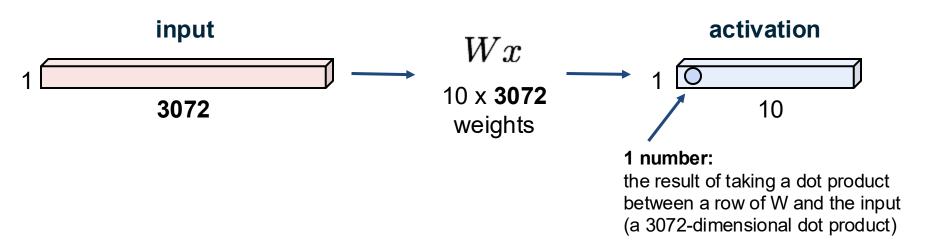


- g() as the weights to learn
- f() as the input to the layer (e.g., images / features) From https://en.wikipedia.org/wiki/Convolution
- f\*g() as the output of the layer (result of convolution)
- Discrete instead of continuous convolution (sum instead of integral)
- g() and f() may be N-dimensional, where  $N \ge 1$

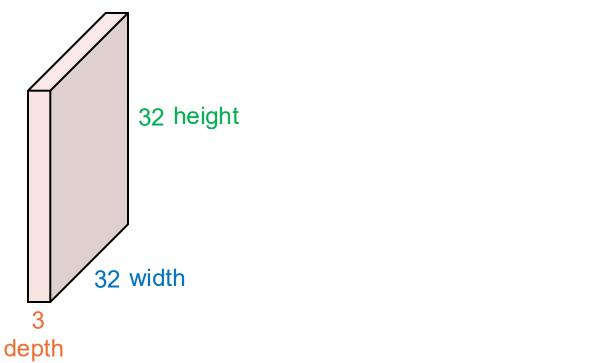


## Fully Connected Layer

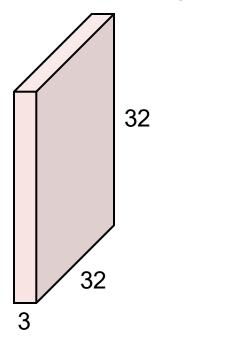
32x32x3 image -> stretch to 3072 x 1



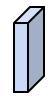
32x32x3 image -> preserve spatial structure



32x32x3 image

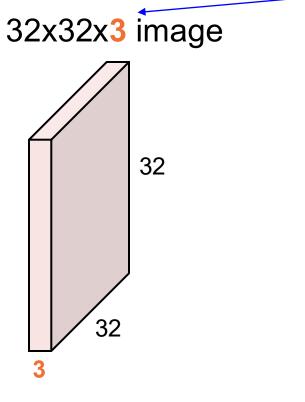


5x5x3 filter

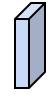


**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products at each location"

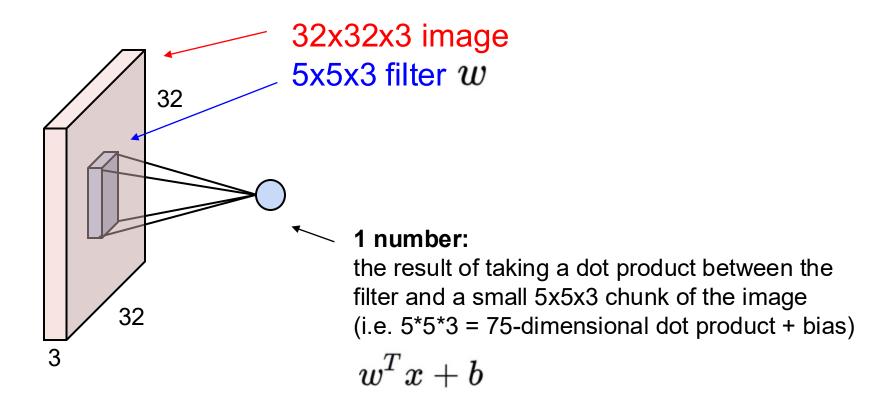
Filters always extend the full depth of the input volume

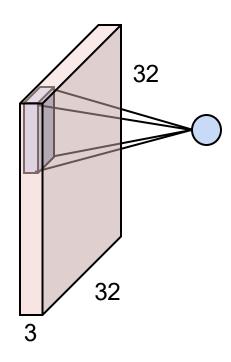


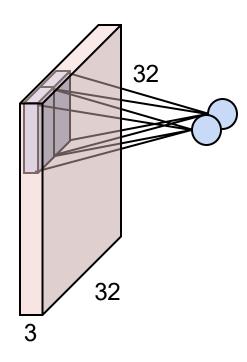
5x5x3 filter

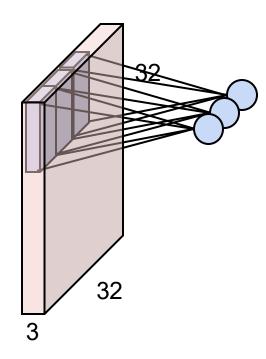


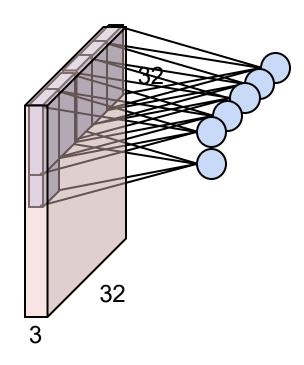
**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"



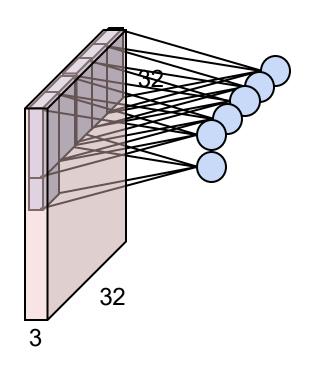




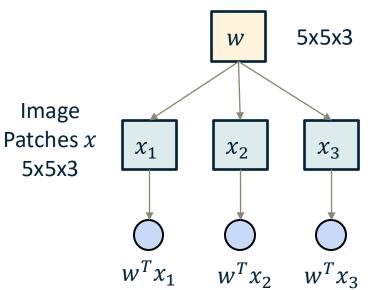




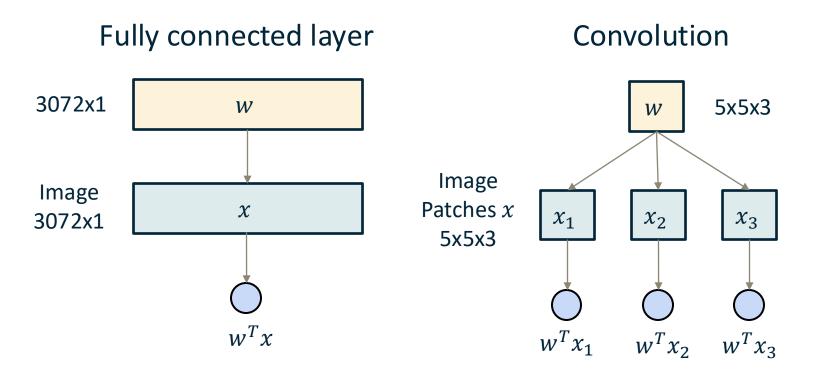
## Parameter Sharing



The same conv kernel applied across spatial locations!

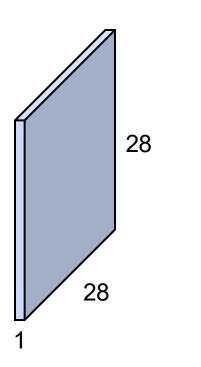


## Parameter Sharing

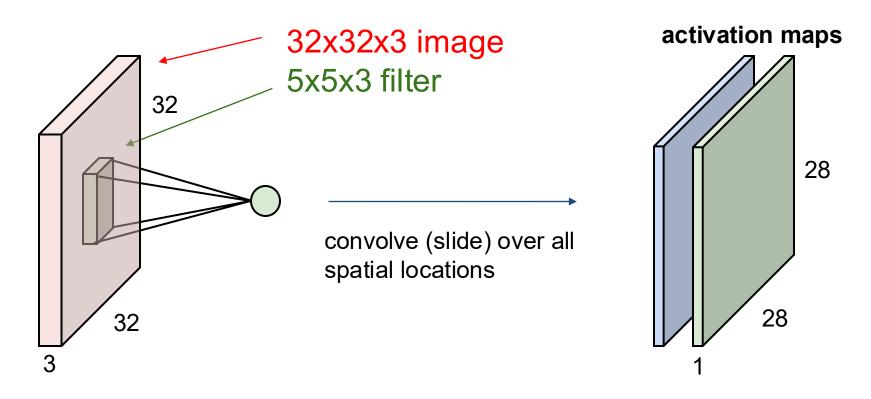




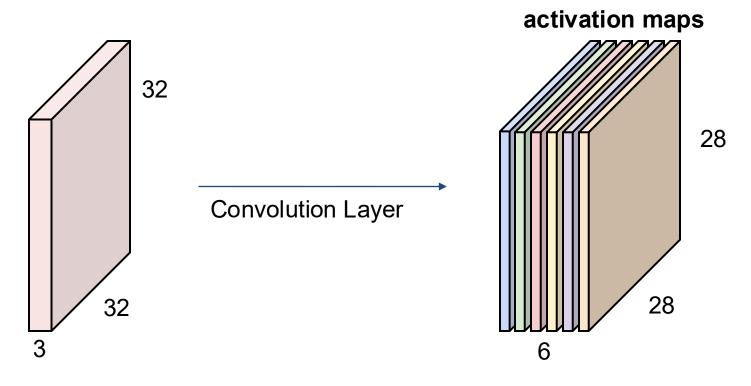
#### activation map



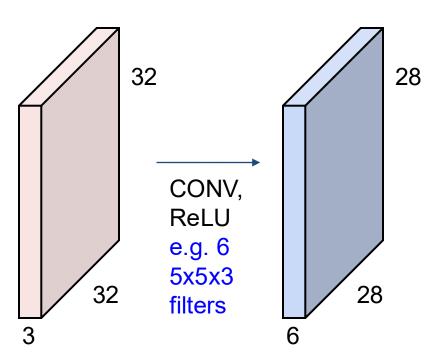
### consider a second, green filter

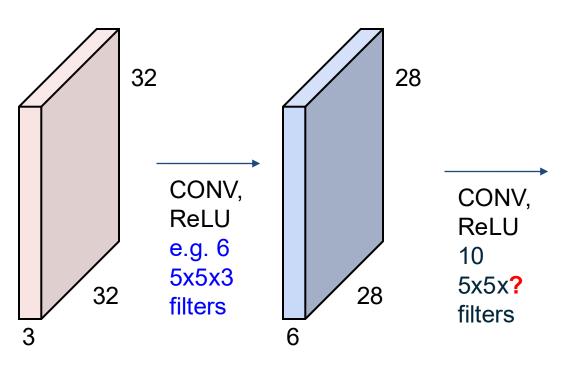


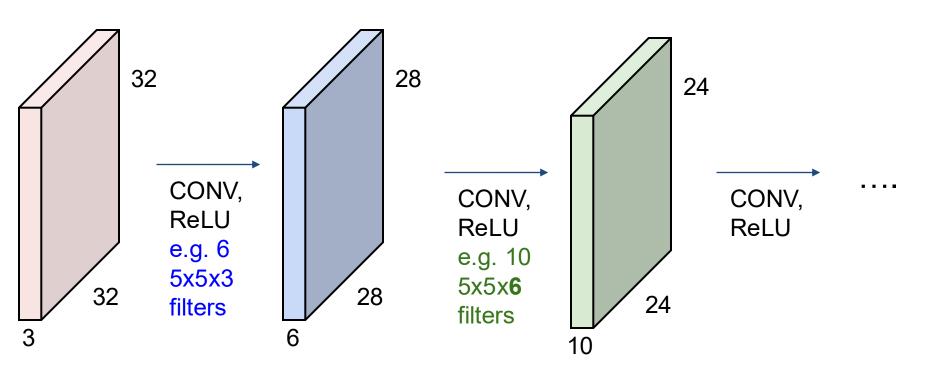
For example, if we had **6** 5x5 filters, we'll get 6 separate activation maps:

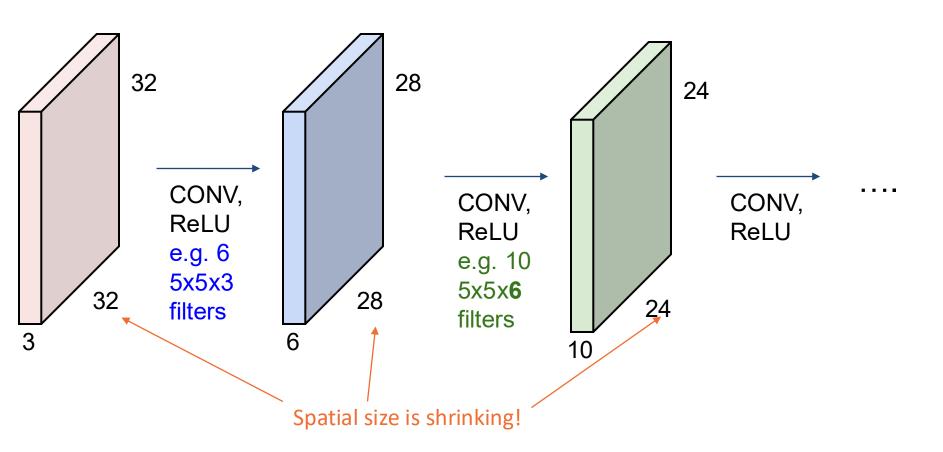


We stack these up to get a "new image" of size 28x28x6!

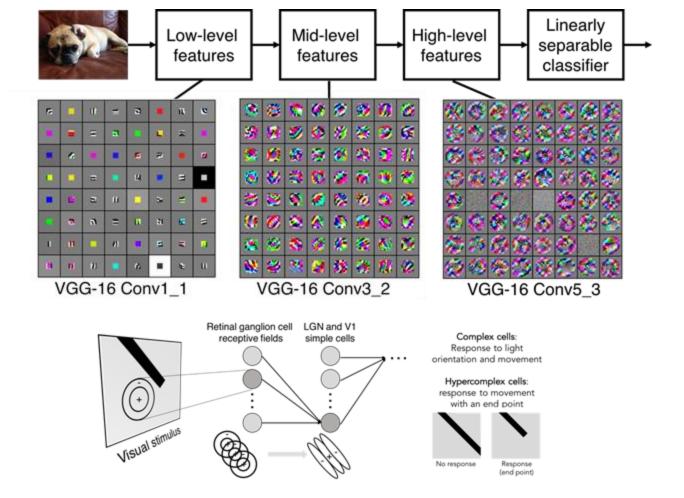


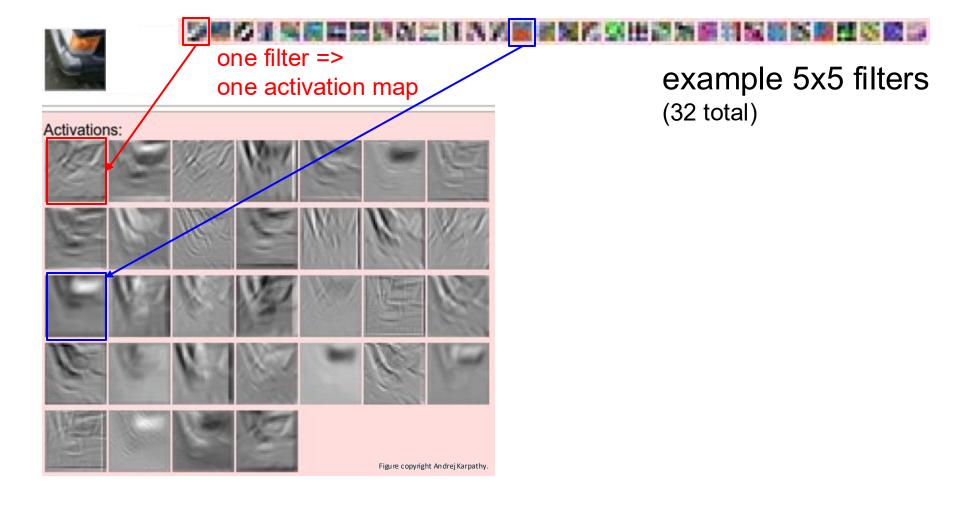




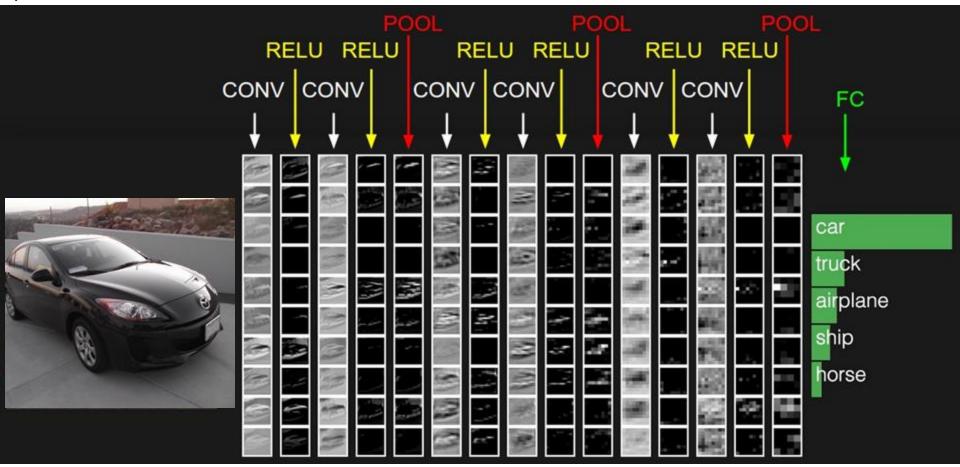


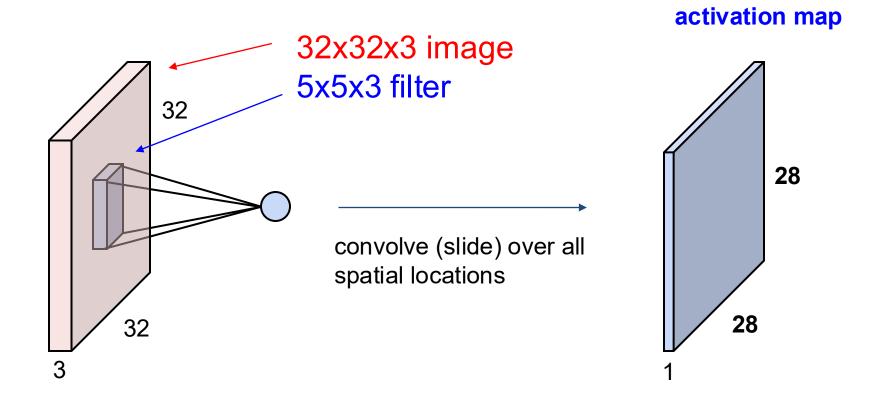
#### **Preview**





preview:





### Conv2D in PyTorch

#### Conv2d

#### What are these?

CLASS torch.nn.Conv2d(in\_channels, out\_channels, kernel\_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding\_mode='zeros', device=None, dtype=None) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size  $(N, C_{\rm in}, H, W)$  and output  $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$  can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where  $\star$  is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

7x7 input (spatially) assume 3x3 filter

|  | 1 |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

7x7 input (spatially) assume 3x3 filter

7

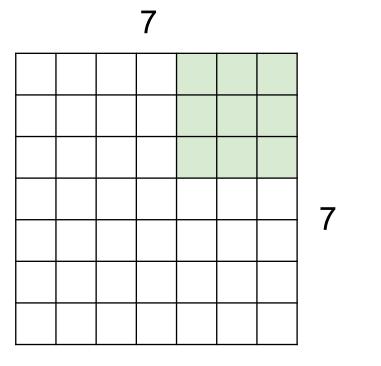
|  | / |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

7x7 input (spatially) assume 3x3 filter

The # of grid that the filter shifts is called **stride**.

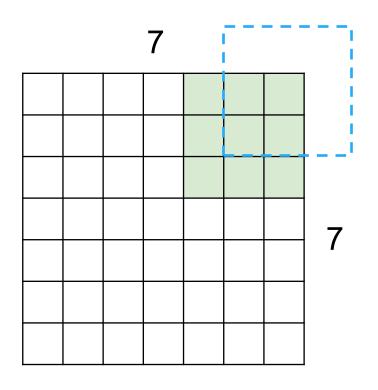
E.g., here we have stride = 1

7x7 input (spatially) assume 3x3 filter with stride = 1



7x7 input (spatially) assume 3x3 filter with stride = 1

**=> 5x5 output** 



7x7 input (spatially) assume 3x3 filter with stride = 1

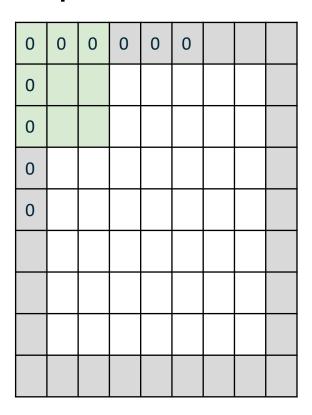
=> 5x5 output

But what about the features at the border?



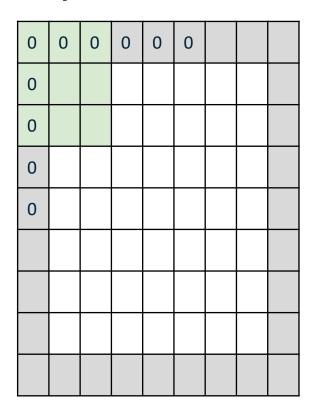
Ideally the filter should be centered wrt the input signal!

### In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

### In practice: Common to zero pad the border



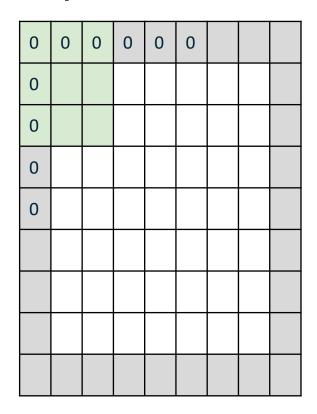
e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

#### 7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

### In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

#### 7x7 output!

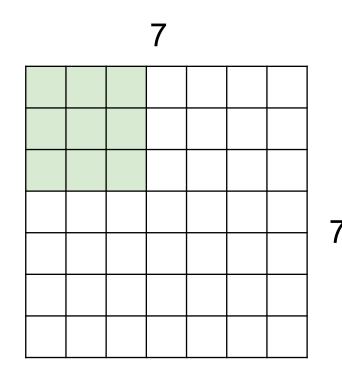
```
N = input dimension

P = padding size

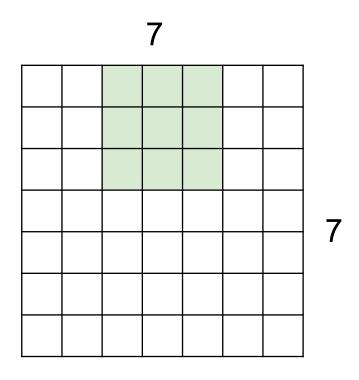
F = filter size

Output size = (N - F + 2P) / stride + 1

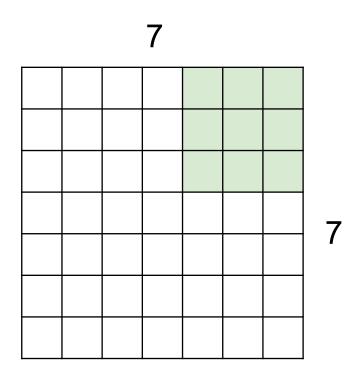
= (7 - 3 + 2 * 1) / 1 + 1 = 7
```



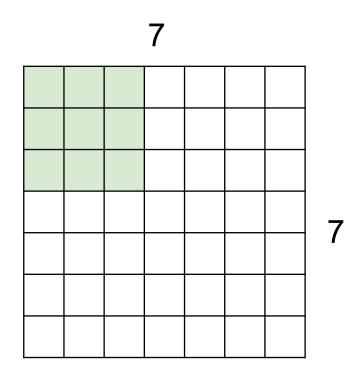
7x7 input (spatially) assume 3x3 filter applied with stride 2



7x7 input (spatially) assume 3x3 filter applied with stride 2



7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!



7x7 input (spatially) assume 3x3 filter applied with stride 3?

| IN | N |  |
|----|---|--|
|----|---|--|

|   | F |  |  |
|---|---|--|--|
|   |   |  |  |
| Ш |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |

Output size:

(N - E) / stride -

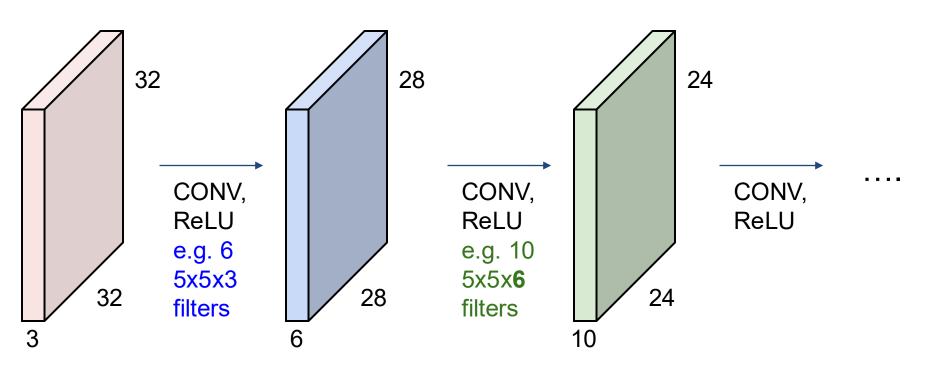
(N - F) / stride + 1

e.g. N = 7, F = 3:  
stride 1 => 
$$(7 - 3)/1 + 1 = 5$$
  
stride 2 =>  $(7 - 3)/2 + 1 = 3$   
stride 3 =>  $(7 - 3)/3 + 1 = 2.33$ :\

We use floor division to calculate output size: (7-3) // 3 + 1 = 2

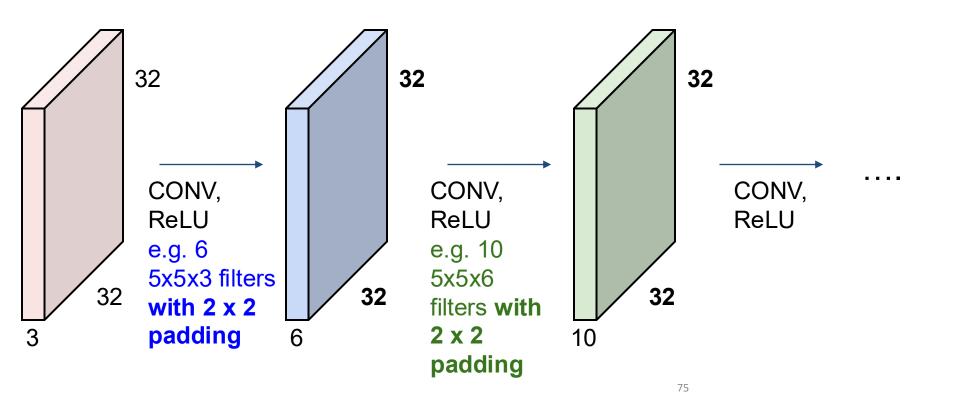
#### Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.



#### Remember back to...

With padding, we can keep the same spatial feature dimension throughout the convolution layers.



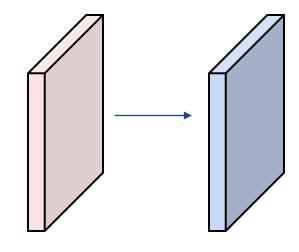
Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2

Output volume size: ?

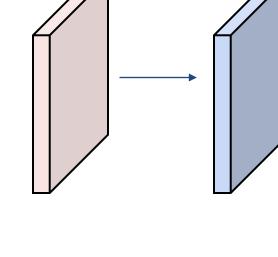
$$(N - F + 2P) / stride + 1$$



Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2



# Output volume size:

(32+2\*2-5)/1+1 = 32 spatially, so

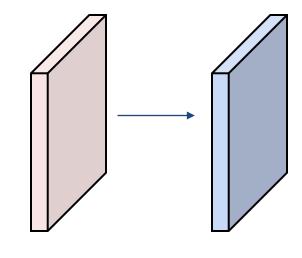
32x32x10

Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2

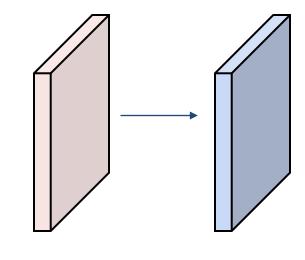
Number of parameters in this layer?



Input volume: 32x32x3

Conv layer: 10 5x5 filters with

stride 1, pad 2



Number of parameters in this layer? each filter has 5\*5\*3 + 1 = 76 params

(+1 for bias)

## Convolution layer: summary

Let's assume input is  $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of  $W_2 \times H_2 \times K$  where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F<sup>2</sup>CK and K biases

## Convolution layer: summary

#### Common settings:

Let's assume input is  $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Conv layer needs 4 hyperparameters: - Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of  $W_2 \times H_2 \times K$  where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F<sup>2</sup>CK and K biases

- 
$$F = 5$$
,  $S = 2$ ,  $P = ?$  (whatever fits)

- 
$$F = 1$$
,  $S = 1$ ,  $P = 0$ 

# Example: CONV layer in PyTorch

#### Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size **F**
- The stride S
- The zero padding P

#### Conv2d

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size  $(N, C_{\rm in}, H, W)$  and output  $(N, C_{\rm out}, H_{\rm out}, V_{\rm out})$  can be precisely described as:

$$\mathrm{out}(N_i, C_{\mathrm{out}_j}) = \mathrm{bias}(C_{\mathrm{out}_i}) + \sum_{k=0}^{C_{\mathrm{o}}-1} \mathrm{weight}(C_{\mathrm{out}_j}, k) \star \mathrm{input}(N_i, k)$$

where  $\star$  is the valid 2D <u>cross-correlation</u> operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

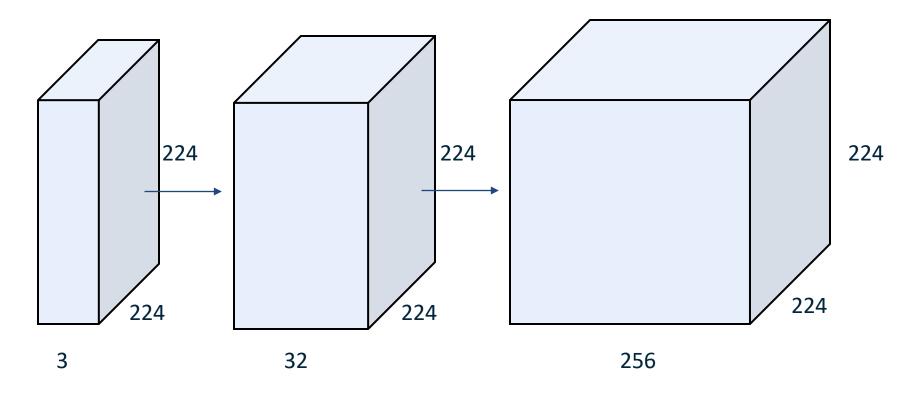
- . stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm, it is harder to describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs, in\_channels and out\_channels must both be divisible by groups. For example,
  - At groups=1, all inputs are convolved to all outputs.
  - At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
  - At groups• in\_channels , each input channel is convolved with its own set of filters, of size:  $\left[\frac{C_{in}}{C_{in}}\right]$ .

The parameters kernel\_size, stride, padding, dilation can either be:

- a single int in which case the same value is used for the height and width dimension
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension

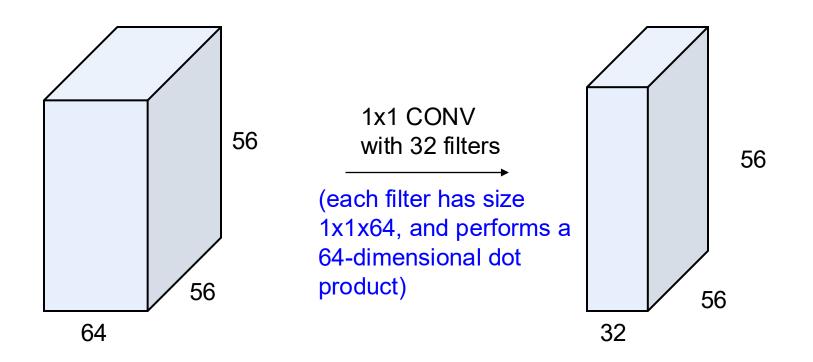
PyTorch is licensed under BSD 3-clause.

### Conv features can grow really big really quickly...

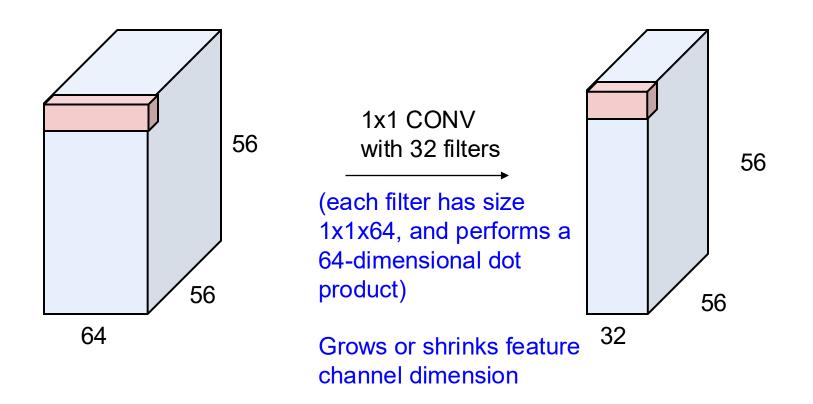


~12million fp!

#### Solution 1: 1x1 Convolution

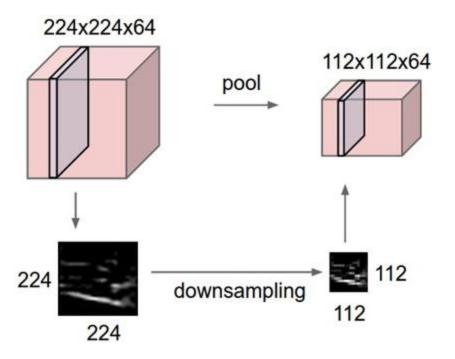


#### Solution 1: 1x1 Convolution



# Solution 2: Pooling (downsampling)

- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:



#### MAX POOLING

#### Single depth slice

4 6 3 3

max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |

- Intuitively, only forward the most important features in the region.
- Also improve spatial invariance (output is agnostic to where the max value comes from)

### **AVG POOLING**

#### Single depth slice

x 5

| 1 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |

average pool with 2x2 filters and stride 2

| 3.25 | 5.25 |
|------|------|
| 2    | 2    |

У

## Pooling layer: summary

Let's assume input is  $W_1 \times H_1 \times C$ Pooling layer needs 2 hyperparameters:

- The spatial extent **F** (e.g., 2)
- The stride **S** (e.g., 2)

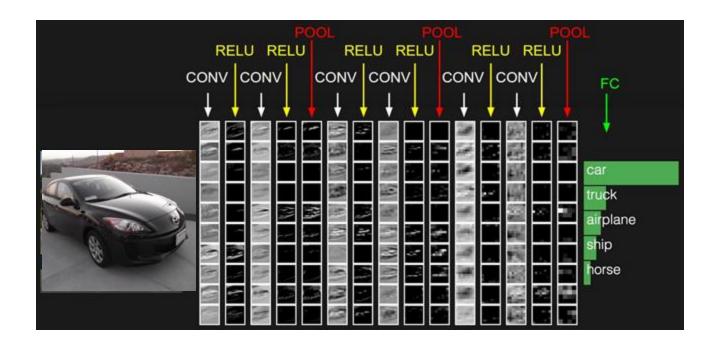
This will produce an output of  $W_2 \times H_2 \times C$  where:

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

Number of parameters?

0

# A canonical (shallow) convolutional neural net



#### Next Time:

Convolutional Neural Nets!